亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Due to the limited availability of high quality datasets for training sentence embeddings in Turkish, we propose a training methodology and a regimen to develop a sentence embedding model. The central idea is simple but effective : is to fine-tune a pretrained encoder-decoder model in two consecutive stages, where the first stage involves aligning the embedding space with translation pairs. Thanks to this alignment, the prowess of the main model can be better projected onto the target language in a sentence embedding setting where it can be fine-tuned with high accuracy in short duration with limited target language dataset.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Microsoft Surface · 3D · Extensibility · CRB ·
2024 年 1 月 8 日

The latest assessments of the emerging technologies for reconfigurable intelligent surfaces (RISs) have indicated the concept's significant potential for localization and sensing, either as individual or simultaneously realized tasks. However, in the vast majority of those studies, the RIS state (i.e., its position and rotation angles) is required to be known a priori. In this paper, we address the problem of the joint three-dimensional (3D) localization of a hybrid RIS (HRIS) and a user. The most cost- and power-efficient hybrid version of an RIS is equipped with a single reception radio-frequency chain and meta-atoms capable of simultaneous reconfigurable reflection and sensing. This dual functionality is controlled by adjustable power splitters embedded at each hybrid meta-atom. Focusing on a downlink scenario where a multi-antenna base station transmits multicarrier signals to a user via an HRIS, we propose a multistage approach to jointly estimate the metasurface's 3D position and 3D rotation matrix (i.e., 6D parameter estimation) as well as the user's 3D position. Our simulation results verify the validity of the proposed estimator via extensive comparisons of the root-mean-square error of the state estimations with the Cram\'{e}r-Rao lower bound (CRB), which is analytically derived. Furthermore, it is showcased that there exists an optimal hybrid reconfigurable intelligent surface (HRIS) power splitting ratio for the desired multi-parameter estimation problem. We also study the robustness of the proposed method in the presence of scattering points in the wireless propagation environment.

Training Generative Adversarial Networks (GANs) remains a challenging problem. The discriminator trains the generator by learning the distribution of real/generated data. However, the distribution of generated data changes throughout the training process, which is difficult for the discriminator to learn. In this paper, we propose a novel method for GANs from the viewpoint of online continual learning. We observe that the discriminator model, trained on historically generated data, often slows down its adaptation to the changes in the new arrival generated data, which accordingly decreases the quality of generated results. By treating the generated data in training as a stream, we propose to detect whether the discriminator slows down the learning of new knowledge in generated data. Therefore, we can explicitly enforce the discriminator to learn new knowledge fast. Particularly, we propose a new discriminator, which automatically detects its retardation and then dynamically masks its features, such that the discriminator can adaptively learn the temporally-vary distribution of generated data. Experimental results show our method outperforms the state-of-the-art approaches.

Answering real-world tourism questions that seek Point-of-Interest (POI) recommendations is challenging, as it requires both spatial and non-spatial reasoning, over a large candidate pool. The traditional method of encoding each pair of question and POI becomes inefficient when the number of candidates increases, making it infeasible for real-world applications. To overcome this, we propose treating the QA task as a dense vector retrieval problem, where we encode questions and POIs separately and retrieve the most relevant POIs for a question by utilizing embedding space similarity. We use pretrained language models (PLMs) to encode textual information, and train a location encoder to capture spatial information of POIs. Experiments on a real-world tourism QA dataset demonstrate that our approach is effective, efficient, and outperforms previous methods across all metrics. Enabled by the dense retrieval architecture, we further build a global evaluation baseline, expanding the search space by 20 times compared to previous work. We also explore several factors that impact on the model's performance through follow-up experiments. Our code and model are publicly available at //github.com/haonan-li/LAMB.

Multimodal-based action recognition methods have achieved high success using pose and RGB modality. However, skeletons sequences lack appearance depiction and RGB images suffer irrelevant noise due to modality limitations. To address this, we introduce human parsing feature map as a novel modality, since it can selectively retain effective semantic features of the body parts, while filtering out most irrelevant noise. We propose a new dual-branch framework called Ensemble Human Parsing and Pose Network (EPP-Net), which is the first to leverage both skeletons and human parsing modalities for action recognition. The first human pose branch feeds robust skeletons in graph convolutional network to model pose features, while the second human parsing branch also leverages depictive parsing feature maps to model parsing festures via convolutional backbones. The two high-level features will be effectively combined through a late fusion strategy for better action recognition. Extensive experiments on NTU RGB+D and NTU RGB+D 120 benchmarks consistently verify the effectiveness of our proposed EPP-Net, which outperforms the existing action recognition methods. Our code is available at: //github.com/liujf69/EPP-Net-Action.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.

Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司