亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Every polygon $P$ can be companioned by a cap polygon $\hat P$ such that $P$ and $\hat P$ serve as two parts of the boundary surface of a polyhedron $V$. Pairs of vertices on $P$ and $\hat P$ are identified successively to become vertices of $V$. In this paper, we study the cap construction that asserts equal angular defects at these pairings. We exhibit a linear relation that arises from the cap construction algorithm, which in turn demonstrates an abundance of polygons that satisfy the closed cap condition, that is, those that can successfully undergo the cap construction process.

相關內容

 CAP原則又稱CAP定理,指的是在一個分布式系統中,Consistency(一致性)、 Availability(可用性)、Partition tolerance(分區容錯性),三者不可得兼。

The \textsc{Mutual Visibility} is a well-known problem in the context of mobile robots. For a set of $n$ robots disposed in the Euclidean plane, it asks for moving the robots without collisions so as to achieve a placement ensuring that no three robots are collinear. For robots moving on graphs, we consider the \textsc{Geodesic Mutual Visibility} ($\GMV$) problem. Robots move along the edges of the graph, without collisions, so as to occupy some vertices that guarantee they become pairwise geodesic mutually visible. This means that there is a shortest path (i.e., a "geodesic") between each pair of robots along which no other robots reside. We study this problem in the context of finite and infinite square grids, for robots operating under the standard Look-Compute-Move model. In both scenarios, we provide resolution algorithms along with formal correctness proofs, highlighting the most relevant peculiarities arising within the different contexts, while optimizing the time complexity.

We investigate error of the Euler scheme in the case when the right-hand side function of the underlying ODE satisfies nonstandard assumptions such as local one-sided Lipschitz condition and local H\"older continuity. Moreover, we assume two cases in regards to information availability: exact and noisy with respect to the right-hand side function. Optimality analysis of the Euler scheme is also provided. Finally, we present the results of some numerical experiments.

We study the problem of maximizing a non-negative monotone $k$-submodular function $f$ under a knapsack constraint, where a $k$-submodular function is a natural generalization of a submodular function to $k$ dimensions. We present a deterministic $(\frac12-\frac{1}{2e})\approx 0.316$-approximation algorithm that evaluates $f$ $O(n^4k^3)$ times, based on the result of Sviridenko (2004) on submodular knapsack maximization.

This paper concerns an expansion of first-order Belnap-Dunn logic which is called $\mathrm{BD}^{\supset,\mathsf{F}}$. Its connectives and quantifiers are all familiar from classical logic and its logical consequence relation is very closely connected to the one of classical logic. Results that convey this close connection are established. Fifteen classical laws of logical equivalence are used to distinguish $\mathrm{BD}^{\supset,\mathsf{F}}$ from all other four-valued logics with the same connectives and quantifiers whose logical consequence relation is as closely connected to the logical consequence relation of classical logic. It is shown that several interesting non-classical connectives added to Belnap-Dunn logic in its expansions that have been studied earlier are definable in $\mathrm{BD}^{\supset,\mathsf{F}}$. It is also established that $\mathrm{BD}^{\supset,\mathsf{F}}$ is both paraconsistent and paracomplete. Moreover, a sequent calculus proof system that is sound and complete with respect to the logical consequence relation of $\mathrm{BD}^{\supset,\mathsf{F}}$ is presented.

We prove lower bounds for the randomized approximation of the embedding $\ell_1^m \rightarrow \ell_\infty^m$ based on algorithms that use arbitrary linear (hence non-adaptive) information provided by a (randomized) measurement matrix $N \in \mathbb{R}^{n \times m}$. These lower bounds reflect the increasing difficulty of the problem for $m \to \infty$, namely, a term $\sqrt{\log m}$ in the complexity $n$. This result implies that non-compact operators between arbitrary Banach spaces are not approximable using non-adaptive Monte Carlo methods. We also compare these lower bounds for non-adaptive methods with upper bounds based on adaptive, randomized methods for recovery for which the complexity $n$ only exhibits a $(\log\log m)$-dependence. In doing so we give an example of linear problems where the error for adaptive vs. non-adaptive Monte Carlo methods shows a gap of order $n^{1/2} ( \log n)^{-1/2}$.

We consider finite element approximations to the optimal constant for the Hardy inequality with exponent $p=2$ in bounded domains of dimension $n=1$ or $n\geq 3$. For finite element spaces of piecewise linear and continuous functions on a mesh of size $h$, we prove that the approximate Hardy constant, $S_h^n$, converges to the optimal Hardy constant $S^n$ no slower than $O(1/\vert \log h \vert)$. We also show that the convergence is no faster than $O(1/\vert \log h \vert^2)$ if $n=1$ or if $n\geq 3$, the domain is the unit ball, and the finite element discretization exploits the rotational symmetry of the problem. Our estimates are compared to exact values for $S_h^n$ obtained computationally.

In this paper, we derive a variant of the Taylor theorem to obtain a new minimized remainder. For a given function $f$ defined on the interval $[a,b]$, this formula is derived by introducing a linear combination of $f'$ computed at $n+1$ equally spaced points in $[a,b]$, together with $f''(a)$ and $f''(b)$. We then consider two classical applications of this Taylor-like expansion: the interpolation error and the numerical quadrature formula. We show that using this approach improves both the Lagrange $P_2$ - interpolation error estimate and the error bound of the Simpson rule in numerical integration.

We show that spectral data of the Koopman operator arising from an analytic expanding circle map $\tau$ can be effectively calculated using an EDMD-type algorithm combining a collocation method of order m with a Galerkin method of order n. The main result is that if $m \geq \delta n$, where $\delta$ is an explicitly given positive number quantifying by how much $\tau$ expands concentric annuli containing the unit circle, then the method converges and approximates the spectrum of the Koopman operator, taken to be acting on a space of analytic hyperfunctions, exponentially fast in n. Additionally, these results extend to more general expansive maps on suitable annuli containing the unit circle.

Let $F_q$ be the finite field with $q$ elements and $F_q[x_1,\ldots, x_n]$ the ring of polynomials in $n$ variables over $F_q$. In this paper we consider permutation polynomials and local permutation polynomials over $F_q[x_1,\ldots, x_n]$, which define interesting generalizations of permutations over finite fields. We are able to construct permutation polynomials in $F_q[x_1,\ldots, x_n]$ of maximum degree $n(q-1)-1$ and local permutation polynomials in $F_q[x_1,\ldots, x_n]$ of maximum degree $n(q-2)$ when $q>3$, extending previous results.

Multivariate histograms are difficult to construct due to the curse of dimensionality. Motivated by $k$-d trees in computer science, we show how to construct an efficient data-adaptive partition of Euclidean space that possesses the following two properties: With high confidence the distribution from which the data are generated is close to uniform on each rectangle of the partition; and despite the data-dependent construction we can give guaranteed finite sample simultaneous confidence intervals for the probabilities (and hence for the average densities) of each rectangle in the partition. This partition will automatically adapt to the sizes of the regions where the distribution is close to uniform. The methodology produces confidence intervals whose widths depend only on the probability content of the rectangles and not on the dimensionality of the space, thus avoiding the curse of dimensionality. Moreover, the widths essentially match the optimal widths in the univariate setting. The simultaneous validity of the confidence intervals allows to use this construction, which we call {\sl Beta-trees}, for various data-analytic purposes. We illustrate this by using Beta-trees for visualizing data and for multivariate mode-hunting.

北京阿比特科技有限公司