亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The \textsc{Mutual Visibility} is a well-known problem in the context of mobile robots. For a set of $n$ robots disposed in the Euclidean plane, it asks for moving the robots without collisions so as to achieve a placement ensuring that no three robots are collinear. For robots moving on graphs, we consider the \textsc{Geodesic Mutual Visibility} ($\GMV$) problem. Robots move along the edges of the graph, without collisions, so as to occupy some vertices that guarantee they become pairwise geodesic mutually visible. This means that there is a shortest path (i.e., a "geodesic") between each pair of robots along which no other robots reside. We study this problem in the context of finite and infinite square grids, for robots operating under the standard Look-Compute-Move model. In both scenarios, we provide resolution algorithms along with formal correctness proofs, highlighting the most relevant peculiarities arising within the different contexts, while optimizing the time complexity.

相關內容

機器人(英語:Robot)包括一切模擬人類行為或思想與模擬其他生物的機械(如機器狗,機器貓等)。狹義上對機器人的定義還有很多分類法及爭議,有些電腦程序甚至也被稱為機器人。在當代工業中,機器人指能自動運行任務的人造機器設備,用以取代或協助人類工作,一般會是機電設備,由計算機程序或是電子電路控制。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

We present a method for computing nearly singular integrals that occur when single or double layer surface integrals, for harmonic potentials or Stokes flow, are evaluated at points nearby. Such values could be needed in solving an integral equation when one surface is close to another or to obtain values at grid points. We replace the singular kernel with a regularized version having a length parameter $\delta$ in order to control discretization error. Analysis near the singularity leads to an expression for the error due to regularization which has terms with unknown coefficients multiplying known quantities. By computing the integral with three choices of $\delta$ we can solve for an extrapolated value that has regularization error reduced to $O(\delta^5)$. In examples with $\delta/h$ constant and moderate resolution we observe total error about $O(h^5)$. For convergence as $h \to 0$ we can choose $\delta$ proportional to $h^q$ with $q < 1$ to ensure the discretization error is dominated by the regularization error. With $q = 4/5$ we find errors about $O(h^4)$. For harmonic potentials we extend the approach to a version with $O(\delta^7)$ regularization; it typically has smaller errors but the order of accuracy is less predictable.

We investigate the combinatorics of max-pooling layers, which are functions that downsample input arrays by taking the maximum over shifted windows of input coordinates, and which are commonly used in convolutional neural networks. We obtain results on the number of linearity regions of these functions by equivalently counting the number of vertices of certain Minkowski sums of simplices. We characterize the faces of such polytopes and obtain generating functions and closed formulas for the number of vertices and facets in a 1D max-pooling layer depending on the size of the pooling windows and stride, and for the number of vertices in a special case of 2D max-pooling.

We propose a new class of models for variable clustering called Asymptotic Independent block (AI-block) models, which defines population-level clusters based on the independence of the maxima of a multivariate stationary mixing random process among clusters. This class of models is identifiable, meaning that there exists a maximal element with a partial order between partitions, allowing for statistical inference. We also present an algorithm for recovering the clusters of variables without specifying the number of clusters \emph{a priori}. Our work provides some theoretical insights into the consistency of our algorithm, demonstrating that under certain conditions it can effectively identify clusters in the data with a computational complexity that is polynomial in the dimension. This implies that groups can be learned nonparametrically in which block maxima of a dependent process are only sub-asymptotic. To further illustrate the significance of our work, we applied our method to neuroscience and environmental real-datasets. These applications highlight the potential and versatility of the proposed approach.

We prove tight bounds on the site percolation threshold for $k$-uniform hypergraphs of maximum degree $\Delta$ and for $k$-uniform hypergraphs of maximum degree $\Delta$ in which any pair of edges overlaps in at most $r$ vertices. The hypergraphs that achieve these bounds are hypertrees, but unlike in the case of graphs, there are many different $k$-uniform, $\Delta$-regular hypertrees. Determining the extremal tree for a given $k, \Delta, r$ involves an optimization problem, and our bounds arise from a convex relaxation of this problem. By combining our percolation bounds with the method of disagreement percolation we obtain improved bounds on the uniqueness threshold for the hard-core model on hypergraphs satisfying the same constraints. Our uniqueness conditions imply exponential weak spatial mixing, and go beyond the known bounds for rapid mixing of local Markov chains and existence of efficient approximate counting and sampling algorithms. Our results lead to natural conjectures regarding the aforementioned algorithmic tasks, based on the intuition that uniqueness thresholds for the extremal hypertrees for percolation determine computational thresholds.

In this paper, we propose a fully discrete soft thresholding trigonometric polynomial approximation on $[-\pi,\pi],$ named Lasso trigonometric interpolation. This approximation is an $\ell_1$-regularized discrete least squares approximation under the same conditions of classical trigonometric interpolation on an equidistant grid. Lasso trigonometric interpolation is sparse and meanwhile it is an efficient tool to deal with noisy data. We theoretically analyze Lasso trigonometric interpolation for continuous periodic function. The principal results show that the $L_2$ error bound of Lasso trigonometric interpolation is less than that of classical trigonometric interpolation, which improved the robustness of trigonometric interpolation. This paper also presents numerical results on Lasso trigonometric interpolation on $[-\pi,\pi]$, with or without the presence of data errors.

We study the maximum-average submatrix problem, in which given an $N \times N$ matrix $J$ one needs to find the $k \times k$ submatrix with the largest average of entries. We study the problem for random matrices $J$ whose entries are i.i.d. random variables by mapping it to a variant of the Sherrington-Kirkpatrick spin-glass model at fixed magnetization. We characterize analytically the phase diagram of the model as a function of the submatrix average and the size of the submatrix $k$ in the limit $N\to\infty$. We consider submatrices of size $k = m N$ with $0 < m < 1$. We find a rich phase diagram, including dynamical, static one-step replica symmetry breaking and full-step replica symmetry breaking. In the limit of $m \to 0$, we find a simpler phase diagram featuring a frozen 1-RSB phase, where the Gibbs measure is composed of exponentially many pure states each with zero entropy. We discover an interesting phenomenon, reminiscent of the phenomenology of the binary perceptron: there exist efficient algorithms that provably work in the frozen 1-RSB phase.

We consider a sharp interface formulation for the multi-phase Mullins-Sekerka flow. The flow is characterized by a network of curves evolving such that the total surface energy of the curves is reduced, while the areas of the enclosed phases are conserved. Making use of a variational formulation, we introduce a fully discrete finite element method. Our discretization features a parametric approximation of the moving interfaces that is independent of the discretization used for the equations in the bulk. The scheme can be shown to be unconditionally stable and to satisfy an exact volume conservation property. Moreover, an inherent tangential velocity for the vertices on the discrete curves leads to asymptotically equidistributed vertices, meaning no remeshing is necessary in practice. Several numerical examples, including a convergence experiment for the three-phase Mullins-Sekerka flow, demonstrate the capabilities of the introduced method.

A sequential pattern with negation, or negative sequential pattern, takes the form of a sequential pattern for which the negation symbol may be used in front of some of the pattern's itemsets. Intuitively, such a pattern occurs in a sequence if negated itemsets are absent in the sequence. Recent work has shown that different semantics can be attributed to these pattern forms, and that state-of-the-art algorithms do not extract the same sets of patterns. This raises the important question of the interpretability of sequential pattern with negation. In this study, our focus is on exploring how potential users perceive negation in sequential patterns. Our aim is to determine whether specific semantics are more "intuitive" than others and whether these align with the semantics employed by one or more state-of-the-art algorithms. To achieve this, we designed a questionnaire to reveal the semantics' intuition of each user. This article presents both the design of the questionnaire and an in-depth analysis of the 124 responses obtained. The outcomes indicate that two of the semantics are predominantly intuitive; however, neither of them aligns with the semantics of the primary state-of-the-art algorithms. As a result, we provide recommendations to account for this disparity in the conclusions drawn.

Neuromorphic computing is one of the few current approaches that have the potential to significantly reduce power consumption in Machine Learning and Artificial Intelligence. Imam & Cleland presented an odour-learning algorithm that runs on a neuromorphic architecture and is inspired by circuits described in the mammalian olfactory bulb. They assess the algorithm's performance in "rapid online learning and identification" of gaseous odorants and odorless gases (short "gases") using a set of gas sensor recordings of different odour presentations and corrupting them by impulse noise. We replicated parts of the study and discovered limitations that affect some of the conclusions drawn. First, the dataset used suffers from sensor drift and a non-randomised measurement protocol, rendering it of limited use for odour identification benchmarks. Second, we found that the model is restricted in its ability to generalise over repeated presentations of the same gas. We demonstrate that the task the study refers to can be solved with a simple hash table approach, matching or exceeding the reported results in accuracy and runtime. Therefore, a validation of the model that goes beyond restoring a learned data sample remains to be shown, in particular its suitability to odour identification tasks.

We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.

北京阿比特科技有限公司