亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a nonlocal evolution equation representing the continuum limit of a large ensemble of interacting particles on graphs forced by noise. The two principle ingredients of the continuum model are a nonlocal term and Q-Wiener process describing the interactions among the particles in the network and stochastic forcing respectively. The network connectivity is given by a square integrable function called a graphon. We prove that the initial value problem for the continuum model is well-posed. Further, we construct a semidiscrete (discrete in space and continuous in time) and a fully discrete schemes for the nonlocal model. The former is obtained by a discontinuous Galerkin method and the latter is based on further discretizing time using the Euler-Maruyama method. We prove convergence and estimate the rate of convergence in each case. For the semidiscrete scheme, the rate of convergence estimate is expressed in terms of the regularity of the graphon, Q-Wiener process, and the initial data. We work in generalized Lipschitz spaces, which allows to treat models with data of lower regularity. This is important for applications as many interesting types of connectivity including small-world and power-law are expressed by graphons that are not smooth. The error analysis of the fully discrete scheme, on the other hand, reveals that for some models common in applied science, one has a higher speed of convergence than that predicted by the standard estimates for the Euler-Maruyama method. The rate of convergence analysis is supplemented with detailed numerical experiments, which are consistent with our analytical results. As a by-product, this work presents a rigorous justification for taking continuum limit for a large class of interacting dynamical systems on graphs subject to noise.

相關內容

A novel orthogonalization-free method together with two specific algorithms are proposed to solve extreme eigenvalue problems. On top of gradient-based algorithms, the proposed algorithms modify the multi-column gradient such that earlier columns are decoupled from later ones. Global convergence to eigenvectors instead of eigenspace is guaranteed almost surely. Locally, algorithms converge linearly with convergence rate depending on eigengaps. Momentum acceleration, exact linesearch, and column locking are incorporated to further accelerate both algorithms and reduce their computational costs. We demonstrate the efficiency of both algorithms on several random matrices with different spectrum distribution and matrices from computational chemistry.

We extend and analyze the energy-based discontinuous Galerkin method for second order wave equations on staggered and structured meshes. By combining spatial staggering with local time-stepping near boundaries, the method overcomes the typical numerical stiffness associated with high order piecewise polynomial approximations. In one space dimension with periodic boundary conditions and suitably chosen numerical fluxes, we prove bounds on the spatial operators that establish stability for CFL numbers $c \frac {\Delta t}{h} < C$ independent of order when stability-enhanced explicit time-stepping schemes of matching order are used. For problems on bounded domains and in higher dimensions we demonstrate numerically that one can march explicitly with large time steps at high order temporal and spatial accuracy.

We analyse an energy minimisation problem recently proposed for modelling smectic-A liquid crystals. The optimality conditions give a coupled nonlinear system of partial differential equations, with a second-order equation for the tensor-valued nematic order parameter $\mathbf{Q}$ and a fourth-order equation for the scalar-valued smectic density variation $u$. Our two main results are a proof of the existence of solutions to the minimisation problem, and the derivation of a priori error estimates for its discretisation using the $\mathcal{C}^0$ interior penalty method. More specifically, optimal rates in the $H^1$ and $L^2$ norms are obtained for $\mathbf{Q}$, while optimal rates in a mesh-dependent norm and $L^2$ norm are obtained for $u$. Numerical experiments confirm the rates of convergence.

This paper studies the convergence of a spatial semi-discretization for a backward semilinear stochastic parabolic equation. The filtration is general, and the spatial semi-discretization uses the standard continuous piecewise linear element method. Firstly, higher regularity of the solution to the continuous equation is derived. Secondly, the first-order spatial accuracy is derived for the spatial semi-discretization. Thirdly, an application of the theoretical result to a stochastic linear quadratic control problem is presented.

The purpose of this work is to study spectral methods to approximate the eigenvalues of nonlocal integral operators. Indeed, even if the spatial domain is an interval, it is very challenging to obtain closed analytical expressions for the eigenpairs of peridynamic operators. Our approach is based on the weak formulation of eigenvalue problem and we consider as orthogonal basis to compute the eigenvalues a set of Fourier trigonometric or Chebyshev polynomials. We show the order of convergence for eigenvalues and eigenfunctions in $L^2$-norm, and finally, we perform some numerical simulations to compare the two proposed methods.

We propose and study a temporal, and spatio-temporal discretisation of the 2D stochastic Navier--Stokes equations in bounded domains supplemented with no-slip boundary conditions. Considering additive noise, we base its construction on the related nonlinear random PDE, which is solved by a transform of the solution of the stochastic Navier--Stokes equations. We show strong rate (up to) $1$ in probability for a corresponding discretisation in space and time (and space-time). Convergence of order (up to) 1 in time was previously only known for linear SPDEs.

We introduce and analyze various Regularized Combined Field Integral Equations (CFIER) formulations of time-harmonic Navier equations in media with piece-wise constant material properties. These formulations can be derived systematically starting from suitable coercive approximations of Dirichlet-to-Neumann operators (DtN), and we present a periodic pseudodifferential calculus framework within which the well posedness of CIER formulations can be established. We also use the DtN approximations to derive and analyze Optimized Schwarz (OS) methods for the solution of elastodynamics transmission problems. The pseudodifferential calculus we develop in this paper relies on careful singularity splittings of the kernels of Navier boundary integral operators which is also the basis of high-order Nystr\"om quadratures for their discretizations. Based on these high-order discretizations we investigate the rate of convergence of iterative solvers applied to CFIER and OS formulations of scattering and transmission problems. We present a variety of numerical results that illustrate that the CFIER methodology leads to important computational savings over the classical CFIE one, whenever iterative solvers are used for the solution of the ensuing discretized boundary integral equations. Finally, we show that the OS methods are competitive in the high-frequency high-contrast regime.

A new explicit stochastic scheme of order 1 is proposed for solving commutative stochastic differential equations (SDEs) with non-globally Lipschitz continuous coefficients. The proposed method is a semi-tamed version of Milstein scheme to solve SDEs with the drift coefficient consisting of non-Lipschitz continuous term and globally Lipschitz continuous term. It is easily implementable and achieves higher strong convergence order. A stability criterion for this method is derived, which shows that the stability condition of the numerical methods and that of the solved equations keep uniform. Compared with some widely used numerical schemes, the proposed method has better performance in inheriting the mean square stability of the exact solution of SDEs. Numerical experiments are given to illustrate the obtained convergence and stability properties.

Fluid-structure interactions are central to many bio-molecular processes, and they impose a great challenge for computational and modeling methods. In this paper, we consider the immersed boundary method (IBM) for biofluid systems, and to alleviate the computational cost, we apply reduced-order techniques to eliminate the degrees of freedom associated with a large number of fluid variables. We show how reduced models can be derived using Petrov-Galerkin projection and subspaces that maintain the incompressibility condition. More importantly, the reduced-order model is shown to preserve the Lyapunov stability. We also address the practical issue of computing coefficient matrices in the reduced-order model using an interpolation technique. The efficiency and robustness of the proposed formulation are examined with test examples from various applications.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

北京阿比特科技有限公司