Relative entropy coding (REC) algorithms encode a sample from a target distribution $Q$ using a proposal distribution $P$, such that the expected codelength is $\mathcal{O}(D_{KL}[Q \,||\, P])$. REC can be seamlessly integrated with existing learned compression models since, unlike entropy coding, it does not assume discrete $Q$ or $P$, and does not require quantisation. However, general REC algorithms require an intractable $\Omega(e^{D_{KL}[Q \,||\, P]})$ runtime. We introduce AS* and AD* coding, two REC algorithms based on A* sampling. We prove that, for continuous distributions over $\mathbb{R}$, if the density ratio is unimodal, AS* has $\mathcal{O}(D_{\infty}[Q \,||\, P])$ expected runtime, where $D_{\infty}[Q \,||\, P]$ is the R\'enyi $\infty$-divergence. We provide experimental evidence that AD* also has $\mathcal{O}(D_{\infty}[Q \,||\, P])$ expected runtime. We prove that AS* and AD* achieve an expected codelength of $\mathcal{O}(D_{KL}[Q \,||\, P])$. Further, we introduce DAD*, an approximate algorithm based on AD* which retains its favourable runtime and has bias similar to that of alternative methods. Focusing on VAEs, we propose the IsoKL VAE (IKVAE), which can be used with DAD* to further improve compression efficiency. We evaluate A* coding with (IK)VAEs on MNIST, showing that it can losslessly compress images near the theoretically optimal limit.
Natural language processing models learn word representations based on the distributional hypothesis, which asserts that word context (e.g., co-occurrence) correlates with meaning. We propose that $n$-grams composed of random character sequences, or $garble$, provide a novel context for studying word meaning both within and beyond extant language. In particular, randomly generated character $n$-grams lack meaning but contain primitive information based on the distribution of characters they contain. By studying the embeddings of a large corpus of garble, extant language, and pseudowords using CharacterBERT, we identify an axis in the model's high-dimensional embedding space that separates these classes of $n$-grams. Furthermore, we show that this axis relates to structure within extant language, including word part-of-speech, morphology, and concept concreteness. Thus, in contrast to studies that are mainly limited to extant language, our work reveals that meaning and primitive information are intrinsically linked.
Recurrent models have been dominating the field of neural machine translation (NMT) for the past few years. Transformers \citep{vaswani2017attention}, have radically changed it by proposing a novel architecture that relies on a feed-forward backbone and self-attention mechanism. Although Transformers are powerful, they could fail to properly encode sequential/positional information due to their non-recurrent nature. To solve this problem, position embeddings are defined exclusively for each time step to enrich word information. However, such embeddings are fixed after training regardless of the task and the word ordering system of the source or target language. In this paper, we propose a novel architecture with new position embeddings depending on the input text to address this shortcoming by taking the order of target words into consideration. Instead of using predefined position embeddings, our solution \textit{generates} new embeddings to refine each word's position information. Since we do not dictate the position of source tokens and learn them in an end-to-end fashion, we refer to our method as \textit{dynamic} position encoding (DPE). We evaluated the impact of our model on multiple datasets to translate from English into German, French, and Italian and observed meaningful improvements in comparison to the original Transformer.
We present an efficient method of pretraining large-scale autoencoding language models using training signals generated by an auxiliary model. Originated in ELECTRA, this training strategy has demonstrated sample-efficiency to pretrain models at the scale of hundreds of millions of parameters. In this work, we conduct a comprehensive empirical study, and propose a recipe, namely "Model generated dEnoising TRaining Objective" (METRO), which incorporates some of the best modeling techniques developed recently to speed up, stabilize, and enhance pretrained language models without compromising model effectiveness. The resultant models, METRO-LM, consisting of up to 5.4 billion parameters, achieve new state-of-the-art on the GLUE, SuperGLUE, and SQuAD benchmarks. More importantly, METRO-LM are efficient in that they often outperform previous large models with significantly smaller model sizes and lower pretraining cost.
While the theoretical analysis of evolutionary algorithms (EAs) has made significant progress for pseudo-Boolean optimization problems in the last 25 years, only sporadic theoretical results exist on how EAs solve permutation-based problems. To overcome the lack of permutation-based benchmark problems, we propose a general way to transfer the classic pseudo-Boolean benchmarks into benchmarks defined on sets of permutations. We then conduct a rigorous runtime analysis of the permutation-based $(1+1)$ EA proposed by Scharnow, Tinnefeld, and Wegener (2004) on the analogues of the \textsc{LeadingOnes} and \textsc{Jump} benchmarks. The latter shows that, different from bit-strings, it is not only the Hamming distance that determines how difficult it is to mutate a permutation $\sigma$ into another one $\tau$, but also the precise cycle structure of $\sigma \tau^{-1}$. For this reason, we also regard the more symmetric scramble mutation operator. We observe that it not only leads to simpler proofs, but also reduces the runtime on jump functions with odd jump size by a factor of $\Theta(n)$. Finally, we show that a heavy-tailed version of the scramble operator, as in the bit-string case, leads to a speed-up of order $m^{\Theta(m)}$ on jump functions with jump size~$m$.%
The lossless compression of a single source $X^n$ was recently shown to be achievable with a notion of strong locality; any $X_i$ can be decoded from a {\emph{constant}} number of compressed bits, with a vanishing in $n$ probability of error. In contrast with the single source setup, we show that for two separately encoded sources $(X^n,Y^n)$, lossless compression and strong locality is generally not possible. More precisely, we show that for the class of "confusable" sources strong locality cannot be achieved whenever one of the sources is compressed below its entropy. In this case, irrespectively of $n$, the probability of error of decoding any $(X_i,Y_i)$ is lower bounded by $2^{-O(d_{\mathrm{loc}})}$, where $d_{\mathrm{loc}}$ denotes the number of compressed bits accessed by the local decoder. Conversely, if the source is not confusable, strong locality is possible even if one of the sources is compressed below its entropy. Results extend to any number of sources.
In this work, we develop quantization and variable-length source codecs for the feedback links in linear-quadratic-Gaussian (LQG) control systems. We prove that for any fixed control performance, the approaches we propose nearly achieve lower bounds on communication cost that have been established in prior work. In particular, we refine the analysis of a classical achievability approach with an eye towards more practical details. Notably, in the prior literature the source codecs used to demonstrate the (near) achievability of these lower bounds are often implicitly assumed to be time-varying. For single-input single-output (SISO) plants, we prove that it suffices to consider time-invariant quantization and source coding. This result follows from analyzing the long-term stochastic behavior of the system's quantized measurements and reconstruction errors. To our knowledge, this time-invariant achievability result is the first in the literature.
Universal coding of integers~(UCI) is a class of variable-length code, such that the ratio of the expected codeword length to $\max\{1,H(P)\}$ is within a constant factor, where $H(P)$ is the Shannon entropy of the decreasing probability distribution $P$. However, if we consider the ratio of the expected codeword length to $H(P)$, the ratio tends to infinity by using UCI, when $H(P)$ tends to zero. To solve this issue, this paper introduces a class of codes, termed generalized universal coding of integers~(GUCI), such that the ratio of the expected codeword length to $H(P)$ is within a constant factor $K$. First, the definition of GUCI is proposed and the coding structure of GUCI is introduced. Next, we propose a class of GUCI $\mathcal{C}$ to achieve the expansion factor $K_{\mathcal{C}}=2$ and show that the optimal GUCI is in the range $1\leq K_{\mathcal{C}}^{*}\leq 2$. Then, by comparing UCI and GUCI, we show that when the entropy is very large or $P(0)$ is not large, there are also cases where the average codeword length of GUCI is shorter. Finally, the asymptotically optimal GUCI is presented.
This paper proposes ResTv2, a simpler, faster, and stronger multi-scale vision Transformer for visual recognition. ResTv2 simplifies the EMSA structure in ResTv1 (i.e., eliminating the multi-head interaction part) and employs an upsample operation to reconstruct the lost medium- and high-frequency information caused by the downsampling operation. In addition, we explore different techniques for better apply ResTv2 backbones to downstream tasks. We found that although combining EMSAv2 and window attention can greatly reduce the theoretical matrix multiply FLOPs, it may significantly decrease the computation density, thus causing lower actual speed. We comprehensively validate ResTv2 on ImageNet classification, COCO detection, and ADE20K semantic segmentation. Experimental results show that the proposed ResTv2 can outperform the recently state-of-the-art backbones by a large margin, demonstrating the potential of ResTv2 as solid backbones. The code and models will be made publicly available at \url{//github.com/wofmanaf/ResT}
We propose a simple modification to the iterative hard thresholding (IHT) algorithm, which recovers asymptotically sparser solutions as a function of the condition number. When aiming to minimize a convex function $f(x)$ with condition number $\kappa$ subject to $x$ being an $s$-sparse vector, the standard IHT guarantee is a solution with relaxed sparsity $O(s\kappa^2)$, while our proposed algorithm, regularized IHT, returns a solution with sparsity $O(s\kappa)$. Our algorithm significantly improves over ARHT which also finds a solution of sparsity $O(s\kappa)$, as it does not require re-optimization in each iteration (and so is much faster), is deterministic, and does not require knowledge of the optimal solution value $f(x^*)$ or the optimal sparsity level $s$. Our main technical tool is an adaptive regularization framework, in which the algorithm progressively learns the weights of an $\ell_2$ regularization term that will allow convergence to sparser solutions. We also apply this framework to low rank optimization, where we achieve a similar improvement of the best known condition number dependence from $\kappa^2$ to $\kappa$.
In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.