While (1) serverless computing is emerging as a popular form of cloud execution, datacenters are going through major changes: (2) storage dissaggregation in the system infrastructure level and (3) integration of domain-specific accelerators in the hardware level. Each of these three trends individually provide significant benefits; however, when combined the benefits diminish. Specifically, the paper makes the key observation that for serverless functions, the overhead of accessing dissaggregated persistent storage overshadows the gains from accelerators. Therefore, to benefit from all these trends in conjunction, we propose Domain-Specific Computational Storage for Serverless (DSCS-Serverless). This idea contributes a serverless model that leverages a programmable accelerator within computational storage to conjugate the benefits of acceleration and storage disaggregation simultaneously. Our results with eight applications shows that integrating a comparatively small accelerator within the storage (DSCS-Serverless) that fits within its power constrains (15 Watts), significantly outperforms a traditional disaggregated system that utilizes the NVIDIA RTX 2080 Ti GPU (250 Watts). Further, the work highlights that disaggregation, serverless model, and the limited power budget for computation in storage require a different design than the conventional practices of integrating microprocessors and FPGAs. This insight is in contrast with current practices of designing computational storage that are yet to address the challenges associated with the shifts in datacenters. In comparison with two such conventional designs that either use quad-core ARM A57 or a Xilinx FPGA, DSCS-Serverless provides 3.7x and 1.7x end-to-end application speedup, 4.3x and 1.9x energy reduction, and 3.2x and 2.3x higher cost efficiency, respectively.
Deep Ensembles (DE) are a prominent approach for achieving excellent performance on key metrics such as accuracy, calibration, uncertainty estimation, and out-of-distribution detection. However, hardware limitations of real-world systems constrain to smaller ensembles and lower-capacity networks, significantly deteriorating their performance and properties. We introduce Packed-Ensembles (PE), a strategy to design and train lightweight structured ensembles by carefully modulating the dimension of their encoding space. We leverage grouped convolutions to parallelize the ensemble into a single shared backbone and forward pass to improve training and inference speeds. PE is designed to operate within the memory limits of a standard neural network. Our extensive research indicates that PE accurately preserves the properties of DE, such as diversity, and performs equally well in terms of accuracy, calibration, out-of-distribution detection, and robustness to distribution shift. We make our code available at //github.com/ENSTA-U2IS/torch-uncertainty.
Prior work has shown that Visual Recognition datasets frequently underrepresent bias groups $B$ (\eg Female) within class labels $Y$ (\eg Programmers). This dataset bias can lead to models that learn spurious correlations between class labels and bias groups such as age, gender, or race. Most recent methods that address this problem require significant architectural changes or additional loss functions requiring more hyper-parameter tuning. Alternatively, data sampling baselines from the class imbalance literature (\eg Undersampling, Upweighting), which can often be implemented in a single line of code and often have no hyperparameters, offer a cheaper and more efficient solution. However, these methods suffer from significant shortcomings. For example, Undersampling drops a significant part of the input distribution per epoch while Oversampling repeats samples, causing overfitting. To address these shortcomings, we introduce a new class-conditioned sampling method: Bias Mimicking. The method is based on the observation that if a class $c$ bias distribution, \ie $P_D(B|Y=c)$ is mimicked across every $c^{\prime}\neq c$, then $Y$ and $B$ are statistically independent. Using this notion, BM, through a novel training procedure, ensures that the model is exposed to the entire distribution per epoch without repeating samples. Consequently, Bias Mimicking improves underrepresented groups' accuracy of sampling methods by 3\% over four benchmarks while maintaining and sometimes improving performance over nonsampling methods. Code: \url{//github.com/mqraitem/Bias-Mimicking}
Address-Event-Representation (AER) is a spike-routing protocol that allows the scaling of neuromorphic and spiking neural network (SNN) architectures to a size that is comparable to that of digital neural network architectures. However, in conventional neuromorphic architectures, the AER protocol and, in general, any virtual interconnect plays only a passive role in computation, i.e., only for routing spikes and events. In this paper, we show how causal temporal primitives like delay, triggering, and sorting inherent in the AER protocol itself can be exploited for scalable neuromorphic computing using our proposed technique called Time-to-Event Margin Propagation (TEMP). The proposed TEMP-based AER architecture is fully asynchronous and relies on interconnect delays for memory and computing as opposed to conventional and local multiply-and-accumulate (MAC) operations. We show that the time-based encoding in the TEMP neural network produces a spatio-temporal representation that can encode a large number of discriminatory patterns. As a proof-of-concept, we show that a trained TEMP-based convolutional neural network (CNN) can demonstrate an accuracy greater than 99% on the MNIST dataset. Overall, our work is a biologically inspired computing paradigm that brings forth a new dimension of research to the field of neuromorphic computing.
We propose a numerical method to spline-interpolate discrete signals and then apply the integral transforms to the corresponding analytical spline functions. This represents a robust and computationally efficient technique for estimating the Laplace transform for noisy data. We revisited a Meijer-G symbolic approach to compute the Laplace transform and alternative approaches to extend canonical observed time-series. A discrete quantization scheme provides the foundation for rapid and reliable estimation of the inverse Laplace transform. We derive theoretic estimates for the inverse Laplace transform of analytic functions and demonstrate empirical results validating the algorithmic performance using observed and simulated data. We also introduce a generalization of the Laplace transform in higher dimensional space-time. We tested the discrete LT algorithm on data sampled from analytic functions with known exact Laplace transforms. The validation of the discrete ILT involves using complex functions with known analytic ILTs.
Reconfigurable architectures like Field Programmable Gate Arrays (FPGAs) have been used for accelerating computations in several domains because of their unique combination of flexibility, performance, and power efficiency. However, FPGAs have not been widely used for high-performance computing, primarily because of their programming complexity and difficulties in optimizing performance. We optimize Tensil AI's open-source inference accelerator for maximum performance using ResNet20 trained on CIFAR in this paper in order to gain insight into the use of FPGAs for high-performance computing. In this paper, we show how improving hardware design, using Xilinx Ultra RAM, and using advanced compiler strategies can lead to improved inference performance. We also demonstrate that running the CIFAR test data set shows very little accuracy drop when rounding down from the original 32-bit floating point. The heterogeneous computing model in our platform allows us to achieve a frame rate of 293.58 frames per second (FPS) and a %90 accuracy on a ResNet20 trained using CIFAR. The experimental results show that the proposed accelerator achieves a throughput of 21.12 Giga-Operations Per Second (GOP/s) with a 5.21 W on-chip power consumption at 100 MHz. The comparison results with off-the-shelf devices and recent state-of-the-art implementations illustrate that the proposed accelerator has obvious advantages in terms of energy efficiency.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Invariant risk minimization (IRM) has recently emerged as a promising alternative for domain generalization. Nevertheless, the loss function is difficult to optimize for nonlinear classifiers and the original optimization objective could fail when pseudo-invariant features and geometric skews exist. Inspired by IRM, in this paper we propose a novel formulation for domain generalization, dubbed invariant information bottleneck (IIB). IIB aims at minimizing invariant risks for nonlinear classifiers and simultaneously mitigating the impact of pseudo-invariant features and geometric skews. Specifically, we first present a novel formulation for invariant causal prediction via mutual information. Then we adopt the variational formulation of the mutual information to develop a tractable loss function for nonlinear classifiers. To overcome the failure modes of IRM, we propose to minimize the mutual information between the inputs and the corresponding representations. IIB significantly outperforms IRM on synthetic datasets, where the pseudo-invariant features and geometric skews occur, showing the effectiveness of proposed formulation in overcoming failure modes of IRM. Furthermore, experiments on DomainBed show that IIB outperforms $13$ baselines by $0.9\%$ on average across $7$ real datasets.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.