亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present CrystalBox, a novel, model-agnostic, posthoc explainability framework for Deep Reinforcement Learning (DRL) controllers in the large family of input-driven environments which includes computer systems. We combine the natural decomposability of reward functions in input-driven environments with the explanatory power of decomposed returns. We propose an efficient algorithm to generate future-based explanations across both discrete and continuous control environments. Using applications such as adaptive bitrate streaming and congestion control, we demonstrate CrystalBox's capability to generate high-fidelity explanations. We further illustrate its higher utility across three practical use cases: contrastive explanations, network observability, and guided reward design, as opposed to prior explainability techniques that identify salient features.

相關內容

In recent years, Transformers have become the de-facto architecture for sequence modeling on text and a variety of multi-dimensional data, such as images and video. However, the use of self-attention layers in a Transformer incurs prohibitive compute and memory complexity that scales quadratically w.r.t. the sequence length. A recent architecture, Mamba, based on state space models has been shown to achieve comparable performance for modeling text sequences, while scaling linearly with the sequence length. In this work, we present Mamba-ND, a generalized design extending the Mamba architecture to arbitrary multi-dimensional data. Our design alternatively unravels the input data across different dimensions following row-major orderings. We provide a systematic comparison of Mamba-ND with several other alternatives, based on prior multi-dimensional extensions such as Bi-directional LSTMs and S4ND. Empirically, we show that Mamba-ND demonstrates performance competitive with the state-of-the-art on a variety of multi-dimensional benchmarks, including ImageNet-1K classification, HMDB-51 action recognition, and ERA5 weather forecasting.

Despite remarkable advancements in emulating human-like behavior through Large Language Models (LLMs), current textual simulations do not adequately address the notion of time. To this end, we introduce TimeArena, a novel textual simulated environment that incorporates complex temporal dynamics and constraints that better reflect real-life planning scenarios. In TimeArena, agents are asked to complete multiple tasks as soon as possible, allowing for parallel processing to save time. We implement the dependency between actions, the time duration for each action, and the occupancy of the agent and the objects in the environment. TimeArena grounds to 30 real-world tasks in cooking, household activities, and laboratory work. We conduct extensive experiments with various state-of-the-art LLMs using TimeArena. Our findings reveal that even the most powerful models, e.g., GPT-4, still lag behind humans in effective multitasking, underscoring the need for enhanced temporal awareness in the development of language agents.

We present DFormer, a novel RGB-D pretraining framework to learn transferable representations for RGB-D segmentation tasks. DFormer has two new key innovations: 1) Unlike previous works that encode RGB-D information with RGB pretrained backbone, we pretrain the backbone using image-depth pairs from ImageNet-1K, and hence the DFormer is endowed with the capacity to encode RGB-D representations; 2) DFormer comprises a sequence of RGB-D blocks, which are tailored for encoding both RGB and depth information through a novel building block design. DFormer avoids the mismatched encoding of the 3D geometry relationships in depth maps by RGB pretrained backbones, which widely lies in existing methods but has not been resolved. We finetune the pretrained DFormer on two popular RGB-D tasks, i.e., RGB-D semantic segmentation and RGB-D salient object detection, with a lightweight decoder head. Experimental results show that our DFormer achieves new state-of-the-art performance on these two tasks with less than half of the computational cost of the current best methods on two RGB-D semantic segmentation datasets and five RGB-D salient object detection datasets. Our code is available at: //github.com/VCIP-RGBD/DFormer.

Large language models~(LLMs) demonstrate significant potential to revolutionize software engineering (SE) by exhibiting outstanding performance in SE tasks such as code and document generation. However, the high reliability and risk control requirements in software engineering raise concerns about the lack of interpretability of LLMs. To address this concern, we conducted a study to evaluate the capabilities of LLMs and their limitations for code analysis in SE. We break down the abilities needed for artificial intelligence~(AI) models to address SE tasks related to code analysis into three categories: 1) syntax understanding, 2) static behavior understanding, and 3) dynamic behavior understanding. Our investigation focused on the ability of LLMs to comprehend code syntax and semantic structures, which include abstract syntax trees (AST), control flow graphs (CFG), and call graphs (CG). We employed four state-of-the-art foundational models, GPT4, GPT3.5, StarCoder and CodeLlama-13b-instruct. We assessed the performance of LLMs on cross-language tasks involving C, Java, Python, and Solidity. Our findings revealed that while LLMs have a talent for understanding code syntax, they struggle with comprehending code semantics, particularly dynamic semantics. We conclude that LLMs possess capabilities similar to an Abstract Syntax Tree (AST) parser, demonstrating initial competencies in static code analysis. Furthermore, our study highlights that LLMs are susceptible to hallucinations when interpreting code semantic structures and fabricating nonexistent facts. These results indicate the need to explore methods to verify the correctness of LLM output to ensure its dependability in SE. More importantly, our study provides an initial answer to why the codes generated by LLM are usually syntax-correct but vulnerable.

We present a novel task for cross-dataset visual grounding in 3D scenes (Cross3DVG), which overcomes limitations of existing 3D visual grounding models, specifically their restricted 3D resources and consequent tendencies of overfitting a specific 3D dataset. We created RIORefer, a large-scale 3D visual grounding dataset, to facilitate Cross3DVG. It includes more than 63k diverse descriptions of 3D objects within 1,380 indoor RGB-D scans from 3RScan, with human annotations. After training the Cross3DVG model using the source 3D visual grounding dataset, we evaluate it without target labels using the target dataset with, e.g., different sensors, 3D reconstruction methods, and language annotators. Comprehensive experiments are conducted using established visual grounding models and with CLIP-based multi-view 2D and 3D integration designed to bridge gaps among 3D datasets. For Cross3DVG tasks, (i) cross-dataset 3D visual grounding exhibits significantly worse performance than learning and evaluation with a single dataset because of the 3D data and language variants across datasets. Moreover, (ii) better object detector and localization modules and fusing 3D data and multi-view CLIP-based image features can alleviate this lower performance. Our Cross3DVG task can provide a benchmark for developing robust 3D visual grounding models to handle diverse 3D scenes while leveraging deep language understanding.

This paper presents RTLFixer, a novel framework enabling automatic syntax errors fixing for Verilog code with Large Language Models (LLMs). Despite LLM's promising capabilities, our analysis indicates that approximately 55% of errors in LLM-generated Verilog are syntax-related, leading to compilation failures. To tackle this issue, we introduce a novel debugging framework that employs Retrieval-Augmented Generation (RAG) and ReAct prompting, enabling LLMs to act as autonomous agents in interactively debugging the code with feedback. This framework demonstrates exceptional proficiency in resolving syntax errors, successfully correcting about 98.5% of compilation errors in our debugging dataset, comprising 212 erroneous implementations derived from the VerilogEval benchmark. Our method leads to 32.3% and 10.1% increase in pass@1 success rates in the VerilogEval-Machine and VerilogEval-Human benchmarks, respectively.

We introduce AnyTool, a large language model agent designed to revolutionize the utilization of a vast array of tools in addressing user queries. We utilize over 16,000 APIs from Rapid API, operating under the assumption that a subset of these APIs could potentially resolve the queries. AnyTool primarily incorporates three elements: an API retriever with a hierarchical structure, a solver aimed at resolving user queries using a selected set of API candidates, and a self-reflection mechanism, which re-activates AnyTool if the initial solution proves impracticable. AnyTool is powered by the function calling feature of GPT-4, eliminating the need for training external modules. We also revisit the evaluation protocol introduced by previous works and identify a limitation in this protocol that leads to an artificially high pass rate. By revising the evaluation protocol to better reflect practical application scenarios, we introduce an additional benchmark, termed AnyToolBench. Experiments across various datasets demonstrate the superiority of our AnyTool over strong baselines such as ToolLLM and a GPT-4 variant tailored for tool utilization. For instance, AnyTool outperforms ToolLLM by +35.4% in terms of average pass rate on ToolBench. Code will be available at //github.com/dyabel/AnyTool.

We introduce EscherNet, a multi-view conditioned diffusion model for view synthesis. EscherNet learns implicit and generative 3D representations coupled with a specialised camera positional encoding, allowing precise and continuous relative control of the camera transformation between an arbitrary number of reference and target views. EscherNet offers exceptional generality, flexibility, and scalability in view synthesis -- it can generate more than 100 consistent target views simultaneously on a single consumer-grade GPU, despite being trained with a fixed number of 3 reference views to 3 target views. As a result, EscherNet not only addresses zero-shot novel view synthesis, but also naturally unifies single- and multi-image 3D reconstruction, combining these diverse tasks into a single, cohesive framework. Our extensive experiments demonstrate that EscherNet achieves state-of-the-art performance in multiple benchmarks, even when compared to methods specifically tailored for each individual problem. This remarkable versatility opens up new directions for designing scalable neural architectures for 3D vision. Project page: \url{//kxhit.github.io/EscherNet}.

Mechanistic interpretability (MI) aims to understand AI models by reverse-engineering the exact algorithms neural networks learn. Most works in MI so far have studied behaviors and capabilities that are trivial and token-aligned. However, most capabilities are not that trivial, which advocates for the study of hidden representations inside these networks as the unit of analysis. We do a literature review, formalize representations for features and behaviors, highlight their importance and evaluation, and perform some basic exploration in the mechanistic interpretability of representations. With discussion and exploratory results, we justify our position that studying representations is an important and under-studied field, and that currently established methods in MI are not sufficient to understand representations, thus pushing for the research community to work toward new frameworks for studying representations.

The maximum entropy encoding framework provides a unified perspective for many non-contrastive learning methods like SimSiam, Barlow Twins, and MEC. Inspired by this framework, we introduce Matrix-SSL, a novel approach that leverages matrix information theory to interpret the maximum entropy encoding loss as matrix uniformity loss. Furthermore, Matrix-SSL enhances the maximum entropy encoding method by seamlessly incorporating matrix alignment loss, directly aligning covariance matrices in different branches. Experimental results reveal that Matrix-SSL outperforms state-of-the-art methods on the ImageNet dataset under linear evaluation settings and on MS-COCO for transfer learning tasks. Specifically, when performing transfer learning tasks on MS-COCO, our method outperforms previous SOTA methods such as MoCo v2 and BYOL up to 3.3% with only 400 epochs compared to 800 epochs pre-training. We also try to introduce representation learning into the language modeling regime, achieving 72.3% on the GSM8K dataset by fine-tuning a 7B model using matrix cross-entropy loss, with a margin of 3.1% over the standard cross-entropy loss. Code available at //github.com/yifanzhang-pro/Matrix-SSL.

北京阿比特科技有限公司