亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Gaussian copula is a powerful tool that has been widely used to model spatial and/or temporal correlated data with arbitrary marginal distributions. However, this kind of model can potentially be too restrictive since it expresses a reflection symmetric dependence. In this paper, we propose a new spatial copula model that makes it possible to obtain random fields with arbitrary marginal distributions with a type of dependence that can be reflection symmetric or not. Particularly, we propose a new random field with uniform marginal distributions that can be viewed as a spatial generalization of the classical Clayton copula model. It is obtained through a power transformation of a specific instance of a beta random field which in turn is obtained using a transformation of two independent Gamma random fields. For the proposed random field, we study the second-order properties and we provide analytic expressions for the bivariate distribution and its correlation. Finally, in the reflection symmetric case, we study the associated geometrical properties. As an application of the proposed model we focus on spatial modeling of data with bounded support. Specifically, we focus on spatial regression models with marginal distribution of the beta type. In a simulation study, we investigate the use of the weighted pairwise composite likelihood method for the estimation of this model. Finally, the effectiveness of our methodology is illustrated by analyzing point-referenced vegetation index data using the Gaussian copula as benchmark. Our developments have been implemented in an open-source package for the \textsf{R} statistical environment.

相關內容

Support Vector Machines (SVM) have gathered significant acclaim as classifiers due to their successful implementation of Statistical Learning Theory. However, in the context of multiclass and multilabel settings, the reliance on vector-based formulations in existing SVM-based models poses limitations regarding flexibility and ease of incorporating additional terms to handle specific challenges. To overcome these limitations, our research paper focuses on introducing a matrix formulation for SVM that effectively addresses these constraints. By employing the Accelerated Gradient Descent method in the dual, we notably enhance the efficiency of solving the Matrix-SVM problem. Experimental evaluations on multilabel and multiclass datasets demonstrate that Matrix SVM achieves superior time efficacy while delivering similar results to Binary Relevance SVM. Moreover, our matrix formulation unveils crucial insights and advantages that may not be readily apparent in traditional vector-based notations. We emphasize that numerous multilabel models can be viewed as extensions of SVM, with customised modifications to meet specific requirements. The matrix formulation presented in this paper establishes a solid foundation for developing more sophisticated models capable of effectively addressing the distinctive challenges encountered in multilabel learning.

In many industrial applications, obtaining labeled observations is not straightforward as it often requires the intervention of human experts or the use of expensive testing equipment. In these circumstances, active learning can be highly beneficial in suggesting the most informative data points to be used when fitting a model. Reducing the number of observations needed for model development alleviates both the computational burden required for training and the operational expenses related to labeling. Online active learning, in particular, is useful in high-volume production processes where the decision about the acquisition of the label for a data point needs to be taken within an extremely short time frame. However, despite the recent efforts to develop online active learning strategies, the behavior of these methods in the presence of outliers has not been thoroughly examined. In this work, we investigate the performance of online active linear regression in contaminated data streams. Our study shows that the currently available query strategies are prone to sample outliers, whose inclusion in the training set eventually degrades the predictive performance of the models. To address this issue, we propose a solution that bounds the search area of a conditional D-optimal algorithm and uses a robust estimator. Our approach strikes a balance between exploring unseen regions of the input space and protecting against outliers. Through numerical simulations, we show that the proposed method is effective in improving the performance of online active learning in the presence of outliers, thus expanding the potential applications of this powerful tool.

We study the problem of generating diverse candidates in the context of Multi-Objective Optimization. In many applications of machine learning such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives. Moreover, these objectives are often imperfect evaluations of some underlying property of interest, making it important to generate diverse candidates to have multiple options for expensive downstream evaluations. We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse Pareto optimal solutions, based on GFlowNets. We introduce two variants of MOGFNs: MOGFN-PC, which models a family of independent sub-problems defined by a scalarization function, with reward-conditional GFlowNets, and MOGFN-AL, which solves a sequence of sub-problems defined by an acquisition function in an active learning loop. Our experiments on wide variety of synthetic and benchmark tasks demonstrate advantages of the proposed methods in terms of the Pareto performance and importantly, improved candidate diversity, which is the main contribution of this work.

It is known that the multiplication of an $N \times M$ matrix with an $M \times P$ matrix can be performed using fewer multiplications than what the naive $NMP$ approach suggests. The most famous instance of this is Strassen's algorithm for multiplying two $2\times 2$ matrices in 7 instead of 8 multiplications. This gives rise to the constraint satisfaction problem of fast matrix multiplication, where a set of $R < NMP$ multiplication terms must be chosen and combined such that they satisfy correctness constraints on the output matrix. Despite its highly combinatorial nature, this problem has not been exhaustively examined from that perspective, as evidenced for example by the recent deep reinforcement learning approach of AlphaTensor. In this work, we propose a simple yet novel Constraint Programming approach to find non-commutative algorithms for fast matrix multiplication or provide proof of infeasibility otherwise. We propose a set of symmetry-breaking constraints and valid inequalities that are particularly helpful in proving infeasibility. On the feasible side, we find that exploiting solver performance variability in conjunction with a sparsity-based problem decomposition enables finding solutions for larger (feasible) instances of fast matrix multiplication. Our experimental results using CP Optimizer demonstrate that we can find fast matrix multiplication algorithms for matrices up to $3\times 3$ in a short amount of time.

In many practical scenarios, including finance, environmental sciences, system reliability, etc., it is often of interest to study the various notion of negative dependence among the observed variables. A new bivariate copula is proposed for modeling negative dependence between two random variables that complies with most of the popular notions of negative dependence reported in the literature. Specifically, the Spearman's rho and the Kendall's tau for the proposed copula have a simple one-parameter form with negative values in the full range. Some important ordering properties comparing the strength of negative dependence with respect to the parameter involved are considered. Simple examples of the corresponding bivariate distributions with popular marginals are presented. Application of the proposed copula is illustrated using a real data set on air quality in the New York City, USA.

We study a game played between advertisers in an online ad platform. The platform sells ad impressions by first-price auction and provides autobidding algorithms that optimize bids on each advertiser's behalf. Each advertiser strategically declares a budget constraint (and possibly a maximum bid) to their autobidder. The chosen constraints define an "inner" budget-pacing game for the autobidders, who compete to maximize the total value received subject to the constraints. Advertiser payoffs in the constraint-choosing "metagame" are determined by the equilibrium reached by the autobidders. Advertisers only specify budgets and linear values to their autobidders, but their true preferences can be more general: we assume only that they have weakly decreasing marginal value for clicks and weakly increasing marginal disutility for spending money. Our main result is that despite this gap between general preferences and simple autobidder constraints, the allocations at equilibrium are approximately efficient. Specifically, at any pure Nash equilibrium of the metagame, the resulting allocation obtains at least half of the liquid welfare of any allocation and this bound is tight. We also obtain a 4-approximation for any mixed Nash equilibrium, and this result extends also to Bayes-Nash equilibria. These results rely on the power to declare budgets: if advertisers can specify only a (linear) value per click but not a budget constraint, the approximation factor at equilibrium can be as bad as linear in the number of advertisers.

Learning with expert advice and multi-armed bandit are two classic online decision problems which differ on how the information is observed in each round of the game. We study a family of problems interpolating the two. For a vector $\mathbf{m}=(m_1,\dots,m_K)\in \mathbb{N}^K$, an instance of $\mathbf{m}$-MAB indicates that the arms are partitioned into $K$ groups and the $i$-th group contains $m_i$ arms. Once an arm is pulled, the losses of all arms in the same group are observed. We prove tight minimax regret bounds for $\mathbf{m}$-MAB and design an optimal PAC algorithm for its pure exploration version, $\mathbf{m}$-BAI, where the goal is to identify the arm with minimum loss with as few rounds as possible. We show that the minimax regret of $\mathbf{m}$-MAB is $\Theta\left(\sqrt{T\sum_{k=1}^K\log (m_k+1)}\right)$ and the minimum number of pulls for an $(\epsilon,0.05)$-PAC algorithm of $\mathbf{m}$-BAI is $\Theta\left(\frac{1}{\epsilon^2}\cdot \sum_{k=1}^K\log (m_k+1)\right)$. Both our upper bounds and lower bounds for $\mathbf{m}$-MAB can be extended to a more general setting, namely the bandit with graph feedback, in terms of the clique cover and related graph parameters. As consequences, we obtained tight minimax regret bounds for several families of feedback graphs.

Mixtures of factor analysers (MFA) models represent a popular tool for finding structure in data, particularly high-dimensional data. While in most applications the number of clusters, and especially the number of latent factors within clusters, is mostly fixed in advance, in the recent literature models with automatic inference on both the number of clusters and latent factors have been introduced. The automatic inference is usually done by assigning a nonparametric prior and allowing the number of clusters and factors to potentially go to infinity. The MCMC estimation is performed via an adaptive algorithm, in which the parameters associated with the redundant factors are discarded as the chain moves. While this approach has clear advantages, it also bears some significant drawbacks. Running a separate factor-analytical model for each cluster involves matrices of changing dimensions, which can make the model and programming somewhat cumbersome. In addition, discarding the parameters associated with the redundant factors could lead to a bias in estimating cluster covariance matrices. At last, identification remains problematic for infinite factor models. The current work contributes to the MFA literature by providing for the automatic inference on the number of clusters and the number of cluster-specific factors while keeping both cluster and factor dimensions finite. This allows us to avoid many of the aforementioned drawbacks of the infinite models. For the automatic inference on the cluster structure, we employ the dynamic mixture of finite mixtures (MFM) model. Automatic inference on cluster-specific factors is performed by assigning an exchangeable shrinkage process (ESP) prior to the columns of the factor loading matrices. The performance of the model is demonstrated on several benchmark data sets as well as real data applications.

Off-policy evaluation (OPE) aims to estimate the benefit of following a counterfactual sequence of actions, given data collected from executed sequences. However, existing OPE estimators often exhibit high bias and high variance in problems involving large, combinatorial action spaces. We investigate how to mitigate this issue using factored action spaces i.e. expressing each action as a combination of independent sub-actions from smaller action spaces. This approach facilitates a finer-grained analysis of how actions differ in their effects. In this work, we propose a new family of "decomposed" importance sampling (IS) estimators based on factored action spaces. Given certain assumptions on the underlying problem structure, we prove that the decomposed IS estimators have less variance than their original non-decomposed versions, while preserving the property of zero bias. Through simulations, we empirically verify our theoretical results, probing the validity of various assumptions. Provided with a technique that can derive the action space factorisation for a given problem, our work shows that OPE can be improved "for free" by utilising this inherent problem structure.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司