亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

IoT application development usually involves separate programming at the device side and server side. While separate programming style is sufficient for many simple applications, it is not suitable for many complex applications that involve complex interactions and intensive data processing. We propose EdgeProg, an edge-centric programming approach to simplify IoT application programming, motivated by the increasing popularity of edge computing. With EdgeProg, users could write application logic in a centralized manner with an augmented If-This-Then-That (IFTTT) syntax and virtual sensor mechanism. The program can be processed at the edge server, which can automatically generate the actual application code and intelligently partition the code into device code and server code, for achieving the optimal latency. EdgeProg employs dynamic linking and loading to deploy the device code on a variety of IoT devices, which do not run any application-specific codes at the start. Results show that EdgeProg achieves an average reduction of 20.96%, 27.8% and 79.41% in terms of execution latency, energy consumption, and lines of code compared with state-of-the-art approaches.

相關內容

Processing 是一門開源編程語言和與之配套的集成(cheng)開發環境(IDE)的名(ming)稱。Processing 在(zai)電子藝(yi)(yi)術和視覺(jue)設計社區被用(yong)來教授編程基礎,并運用(yong)于大量的新媒體(ti)和互(hu)動藝(yi)(yi)術作品中。

Analog crossbar arrays comprising programmable nonvolatile resistors are under intense investigation for acceleration of deep neural network training. However, the ubiquitous asymmetric conductance modulation of practical resistive devices critically degrades the classification performance of networks trained with conventional algorithms. Here, we describe and experimentally demonstrate an alternative fully-parallel training algorithm: Stochastic Hamiltonian Descent. Instead of conventionally tuning weights in the direction of the error function gradient, this method programs the network parameters to successfully minimize the total energy (Hamiltonian) of the system that incorporates the effects of device asymmetry. We provide critical intuition on why device asymmetry is fundamentally incompatible with conventional training algorithms and how the new approach exploits it as a useful feature instead. Our technique enables immediate realization of analog deep learning accelerators based on readily available device technologies.

Motivated by the high-frequency data streams continuously generated, real-time learning is becoming increasingly important. These data streams should be processed sequentially with the property that the data stream may change over time. In this streaming setting, we propose techniques for minimizing convex objectives through unbiased estimates of their gradients, commonly referred to as stochastic approximation problems. Our methods rely on stochastic approximation algorithms because of their applicability and computational advantages. The reasoning includes iterate averaging that guarantees optimal statistical efficiency under classical conditions. Our non-asymptotic analysis shows accelerated convergence by selecting the learning rate according to the expected data streams. We show that the average estimate converges optimally and robustly for any data stream rate. In addition, noise reduction can be achieved by processing the data in a specific pattern, which is advantageous for large-scale machine learning problems. These theoretical results are illustrated for various data streams, showing the effectiveness of the proposed algorithms.

The User Plane Function (UPF) aims to provide network services in the 3GPP 5G core network. These services need to be implemented on demand inexpensively with provable properties. Existing network dataplane programming languages are not up to the task. A new software paradigm is presented for the UPF. It is inspired by model checking a concurrent reactive system where conceptually each component of the system is modeled as an extended finite-state machine and their product is verified. We show how such a product can be computed for one example of a UPF and how its state invariants can be inferred, thereby eliminating the need to formally verify the product separately. Code can be generated from the product and regenerated on the fly to remain optimal for the probability distribution of network traffic the UPF must process.

The radio access network (RAN) part of the next-generation wireless networks will require efficient solutions for satisfying low latency and high-throughput services. The open RAN (O-RAN) is one of the candidates to achieve this goal, in addition to increasing vendor diversity and promoting openness. In the O-RAN architecture, network functions are executed in central units (CU), distributed units (DU), and radio units (RU). These entities are virtualized on general-purpose CPUs and form a processing pool. These processing pools can be located in different geographical places and have limited capacity, affecting the energy consumption and the performance of networks. Additionally, since user demand is not deterministic, special attention should be paid to allocating resource blocks to users by ensuring their expected quality of service for latency-sensitive traffic flows. In this paper, we propose a joint optimization solution to enhance energy efficiency and provide delay guarantees to the users in the O-RAN architecture. We formulate this novel problem and linearize it to provide a solution with a mixed-integer linear problem (MILP) solver. We compare this with a baseline that addresses this optimization problem using a disjoint approach. The results show that our approach outperforms the baseline method in terms of energy efficiency.

Low-Latency IoT applications such as autonomous vehicles, augmented/virtual reality devices and security applications require high computation resources to make decisions on the fly. However, these kinds of applications cannot tolerate offloading their tasks to be processed on a cloud infrastructure due to the experienced latency. Therefore, edge computing is introduced to enable low latency by moving the tasks processing closer to the users at the edge of the network. The edge of the network is characterized by the heterogeneity of edge devices forming it; thus, it is crucial to devise novel solutions that take into account the different physical resources of each edge device. In this paper, we propose a resource representation scheme, allowing each edge device to expose its resource information to the supervisor of the edge node through the mobile edge computing application programming interfaces proposed by European Telecommunications Standards Institute. The information about the edge device resource is exposed to the supervisor of the EN each time a resource allocation is required. To this end, we leverage a Lyapunov optimization framework to dynamically allocate resources at the edge devices. To test our proposed model, we performed intensive theoretical and experimental simulations on a testbed to validate the proposed scheme and its impact on different system's parameters. The simulations have shown that our proposed approach outperforms other benchmark approaches and provides low latency and optimal resource consumption.

In this paper, we address the resource provisioning problem for service function chaining (SFC) in terms of the placement and chaining of virtual network functions (VNFs) within a multi-access edge computing (MEC) infrastructure to reduce service delay. We consider the VNFs as the main entities of the system and propose a mean-field game (MFG) framework to model their behavior for their placement and chaining. Then, to achieve the optimal resource provisioning policy without considering the system control parameters, we reduce the proposed MFG to a Markov decision process (MDP). In this way, we leverage reinforcement learning with an actor-critic approach for MEC nodes to learn complex placement and chaining policies. Simulation results show that our proposed approach outperforms benchmark state-of-the-art approaches.

Specialized domain knowledge is often necessary to accurately annotate training sets for in-depth analysis, but can be burdensome and time-consuming to acquire from domain experts. This issue arises prominently in automated behavior analysis, in which agent movements or actions of interest are detected from video tracking data. To reduce annotation effort, we present TREBA: a method to learn annotation-sample efficient trajectory embedding for behavior analysis, based on multi-task self-supervised learning. The tasks in our method can be efficiently engineered by domain experts through a process we call "task programming", which uses programs to explicitly encode structured knowledge from domain experts. Total domain expert effort can be reduced by exchanging data annotation time for the construction of a small number of programmed tasks. We evaluate this trade-off using data from behavioral neuroscience, in which specialized domain knowledge is used to identify behaviors. We present experimental results in three datasets across two domains: mice and fruit flies. Using embeddings from TREBA, we reduce annotation burden by up to a factor of 10 without compromising accuracy compared to state-of-the-art features. Our results thus suggest that task programming and self-supervision can be an effective way to reduce annotation effort for domain experts.

There is growing interest in object detection in advanced driver assistance systems and autonomous robots and vehicles. To enable such innovative systems, we need faster object detection. In this work, we investigate the trade-off between accuracy and speed with domain-specific approximations, i.e. category-aware image size scaling and proposals scaling, for two state-of-the-art deep learning-based object detection meta-architectures. We study the effectiveness of applying approximation both statically and dynamically to understand the potential and the applicability of them. By conducting experiments on the ImageNet VID dataset, we show that domain-specific approximation has great potential to improve the speed of the system without deteriorating the accuracy of object detectors, i.e. up to 7.5x speedup for dynamic domain-specific approximation. To this end, we present our insights toward harvesting domain-specific approximation as well as devise a proof-of-concept runtime, AutoFocus, that exploits dynamic domain-specific approximation.

This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.

Network Virtualization is one of the most promising technologies for future networking and considered as a critical IT resource that connects distributed, virtualized Cloud Computing services and different components such as storage, servers and application. Network Virtualization allows multiple virtual networks to coexist on same shared physical infrastructure simultaneously. One of the crucial keys in Network Virtualization is Virtual Network Embedding, which provides a method to allocate physical substrate resources to virtual network requests. In this paper, we investigate Virtual Network Embedding strategies and related issues for resource allocation of an Internet Provider(InP) to efficiently embed virtual networks that are requested by Virtual Network Operators(VNOs) who share the same infrastructure provided by the InP. In order to achieve that goal, we design a heuristic Virtual Network Embedding algorithm that simultaneously embeds virtual nodes and virtual links of each virtual network request onto physic infrastructure. Through extensive simulations, we demonstrate that our proposed scheme improves significantly the performance of Virtual Network Embedding by enhancing the long-term average revenue as well as acceptance ratio and resource utilization of virtual network requests compared to prior algorithms.

北京阿比特科技有限公司