亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sensitivity analysis for the unconfoundedness assumption is a crucial component of observational studies. The marginal sensitivity model has become increasingly popular for this purpose due to its interpretability and mathematical properties. As the basis of $L^\infty$-sensitivity analysis, it assumes the logit difference between the observed and full data propensity scores is uniformly bounded. In this article, we introduce a new $L^2$-sensitivity analysis framework which is flexible, sharp and efficient. We allow the strength of unmeasured confounding to vary across units and only require it to be bounded marginally for partial identification. We derive analytical solutions to the optimization problems under our $L^2$-models, which can be used to obtain sharp bounds for the average treatment effect (ATE). We derive efficient influence functions and use them to develop efficient one-step estimators in both analyses. We show that multiplier bootstrap can be applied to construct simultaneous confidence bands for our ATE bounds. In a real-data study, we demonstrate that $L^2$-analysis relaxes the interpretation of $L^\infty$-analysis and provides a much more reliable calibration process using observed covariates. Finally, we provide an extension of our theoretical results to the conditional average treatment effect (CATE).

相關內容

Causal inference from observational data is crucial for many disciplines such as medicine and economics. However, sharp bounds for causal effects under relaxations of the unconfoundedness assumption (causal sensitivity analysis) are subject to ongoing research. So far, works with sharp bounds are restricted to fairly simple settings (e.g., a single binary treatment). In this paper, we propose a unified framework for causal sensitivity analysis under unobserved confounding in various settings. For this, we propose a flexible generalization of the marginal sensitivity model (MSM) and then derive sharp bounds for a large class of causal effects. This includes (conditional) average treatment effects, effects for mediation analysis and path analysis, and distributional effects. Furthermore, our sensitivity model is applicable to discrete, continuous, and time-varying treatments. It allows us to interpret the partial identification problem under unobserved confounding as a distribution shift in the latent confounders while evaluating the causal effect of interest. In the special case of a single binary treatment, our bounds for (conditional) average treatment effects coincide with recent optimality results for causal sensitivity analysis. Finally, we propose a scalable algorithm to estimate our sharp bounds from observational data.

This paper studies robust nonparametric regression, in which an adversarial attacker can modify the values of up to $q$ samples from a training dataset of size $N$. Our initial solution is an M-estimator based on Huber loss minimization. Compared with simple kernel regression, i.e. the Nadaraya-Watson estimator, this method can significantly weaken the impact of malicious samples on the regression performance. We provide the convergence rate as well as the corresponding minimax lower bound. The result shows that, with proper bandwidth selection, $\ell_\infty$ error is minimax optimal. The $\ell_2$ error is optimal if $q\lesssim \sqrt{N/\ln^2 N}$, but is suboptimal with larger $q$. The reason is that this estimator is vulnerable if there are many attacked samples concentrating in a small region. To address this issue, we propose a correction method by projecting the initial estimate to the space of Lipschitz functions. The final estimate is nearly minimax optimal for arbitrary $q$, up to a $\ln N$ factor.

This paper examines robust functional data analysis for discretely observed data, where the underlying process encompasses various distributions, such as heavy tail, skewness, or contaminations. We propose a unified robust concept of functional mean, covariance, and principal component analysis, while existing methods and definitions often differ from one another or only address fully observed functions (the ``ideal'' case). Specifically, the robust functional mean can deviate from its non-robust counterpart and is estimated using robust local linear regression. Moreover, we define a new robust functional covariance that shares useful properties with the classic version. Importantly, this covariance yields the robust version of Karhunen--Lo\`eve decomposition and corresponding principal components beneficial for dimension reduction. The theoretical results of the robust functional mean, covariance, and eigenfunction estimates, based on pooling discretely observed data (ranging from sparse to dense), are established and aligned with their non-robust counterparts. The newly-proposed perturbation bounds for estimated eigenfunctions, with indexes allowed to grow with sample size, lay the foundation for further modeling based on robust functional principal component analysis.

Existing heterogeneous treatment effects learners, also known as conditional average treatment effects (CATE) learners, lack a general mechanism for end-to-end inter-treatment information sharing, and data have to be split among potential outcome functions to train CATE learners which can lead to biased estimates with limited observational datasets. To address this issue, we propose a novel deep learning-based framework to train CATE learners that facilitates dynamic end-to-end information sharing among treatment groups. The framework is based on \textit{soft weight sharing} of \textit{hypernetworks}, which offers advantages such as parameter efficiency, faster training, and improved results. The proposed framework complements existing CATE learners and introduces a new class of uncertainty-aware CATE learners that we refer to as \textit{HyperCATE}. We develop HyperCATE versions of commonly used CATE learners and evaluate them on IHDP, ACIC-2016, and Twins benchmarks. Our experimental results show that the proposed framework improves the CATE estimation error via counterfactual inference, with increasing effectiveness for smaller datasets.

We study online learning problems in which a decision maker has to make a sequence of costly decisions, with the goal of maximizing their expected reward while adhering to budget and return-on-investment (ROI) constraints. Previous work requires the decision maker to know beforehand some specific parameters related to the degree of strict feasibility of the offline problem. Moreover, when inputs are adversarial, it requires the existence of a strictly feasible solution to the offline optimization problem at each round. Both requirements are unrealistic for practical applications such as bidding in online ad auctions. We propose a best-of-both-worlds primal-dual framework which circumvents both assumptions by exploiting the notion of interval regret, providing guarantees under both stochastic and adversarial inputs. Our proof techniques can be applied to both input models with minimal modifications, thereby providing a unified perspective on the two problems. Finally, we show how to instantiate the framework to optimally bid in various mechanisms of practical relevance, such as first- and second-price auctions.

We consider contextual bandit problems with knapsacks [CBwK], a problem where at each round, a scalar reward is obtained and vector-valued costs are suffered. The learner aims to maximize the cumulative rewards while ensuring that the cumulative costs are lower than some predetermined cost constraints. We assume that contexts come from a continuous set, that costs can be signed, and that the expected reward and cost functions, while unknown, may be uniformly estimated -- a typical assumption in the literature. In this setting, total cost constraints had so far to be at least of order $T^{3/4}$, where $T$ is the number of rounds, and were even typically assumed to depend linearly on $T$. We are however motivated to use CBwK to impose a fairness constraint of equalized average costs between groups: the budget associated with the corresponding cost constraints should be as close as possible to the natural deviations, of order $\sqrt{T}$. To that end, we introduce a dual strategy based on projected-gradient-descent updates, that is able to deal with total-cost constraints of the order of $\sqrt{T}$ up to poly-logarithmic terms. This strategy is more direct and simpler than existing strategies in the literature. It relies on a careful, adaptive, tuning of the step size.

We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters, which facilitates the trade-off between privacy and utility. The algorithm is applicable to arbitrary privacy measurements that maps from the distortion to a real value. It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning. Such adaptive and fine-grained protection can improve the effectiveness of privacy-preserved federated learning. Theoretically, we show that gap between the utility loss of the protection hyperparameter output by our algorithm and that of the optimal protection hyperparameter is sub-linear in the total number of iterations. The sublinearity of our algorithm indicates that the average gap between the performance of our algorithm and that of the optimal performance goes to zero when the number of iterations goes to infinity. Further, we provide the convergence rate of our proposed algorithm. We conduct empirical results on benchmark datasets to verify that our method achieves better utility than the baseline methods under the same privacy budget.

Recent critiques of Physics Education Research (PER) studies have revoiced the critical issues when drawing causal inferences from observational data where no intervention is present. In response to a call for a "causal reasoning primer", this paper discusses some of the fundamental issues underlying statistical causal inference. In reviewing these issues, we discuss well-established causal inference methods commonly applied in other fields and discuss their application to PER. Using simulated data sets, we illustrate (i) why analysis for causal inference should control for confounders but not control for mediators and colliders and (ii) that multiple proposed causal models can fit a highly correlated data set. Finally, we discuss how these causal inference methods can be used to represent and explain existing issues in quantitative PER. Throughout, we discuss a central issue: quantitative results from observational studies cannot support a researcher's proposed causal model over other alternative models. To address this issue, we propose an explicit role for observational studies in PER that draw statistical causal inferences: proposing future intervention studies and predicting their outcomes. Mirroring a broader connection between theoretical motivating experiments in physics, observational studies in PER can make quantitative predictions of the causal effects of interventions, and future intervention studies can test those predictions directly.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司