亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of distribution-free conformal prediction and the criterion of group conditional validity. This criterion is motivated by many practical scenarios including hidden stratification and group fairness. Existing methods achieve such guarantees under either restrictive grouping structure or distributional assumptions, or they are overly-conservative under heteroskedastic noise. We propose a simple reduction to the problem of achieving validity guarantees for individual populations by leveraging algorithms for a problem called multi-group learning. This allows us to port theoretical guarantees from multi-group learning to obtain obtain sample complexity guarantees for conformal prediction. We also provide a new algorithm for multi-group learning for groups with hierarchical structure. Using this algorithm in our reduction leads to improved sample complexity guarantees with a simpler predictor structure.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · Learning · 情景 · 可交換的 · 核回歸 ·
2023 年 5 月 9 日

Efficiently and flexibly estimating treatment effect heterogeneity is an important task in a wide variety of settings ranging from medicine to marketing, and there are a considerable number of promising conditional average treatment effect estimators currently available. These, however, typically rely on the assumption that the measured covariates are enough to justify conditional exchangeability. We propose the P-learner, motivated by the R- and DR-learner, a tailored two-stage loss function for learning heterogeneous treatment effects in settings where exchangeability given observed covariates is an implausible assumption, and we wish to rely on proxy variables for causal inference. Our proposed estimator can be implemented by off-the-shelf loss-minimizing machine learning methods, which in the case of kernel regression satisfies an oracle bound on the estimated error as long as the nuisance components are estimated reasonably well.

Macro-AUC is the arithmetic mean of the class-wise AUCs in multi-label learning and is commonly used in practice. However, its theoretical understanding is far lacking. Toward solving it, we characterize the generalization properties of various learning algorithms based on the corresponding surrogate losses w.r.t. Macro-AUC. We theoretically identify a critical factor of the dataset affecting the generalization bounds: \emph{the label-wise class imbalance}. Our results on the imbalance-aware error bounds show that the widely-used univariate loss-based algorithm is more sensitive to the label-wise class imbalance than the proposed pairwise and reweighted loss-based ones, which probably implies its worse performance. Moreover, empirical results on various datasets corroborate our theory findings. To establish it, technically, we propose a new (and more general) McDiarmid-type concentration inequality, which may be of independent interest.

Robust feature selection is vital for creating reliable and interpretable Machine Learning (ML) models. When designing statistical prediction models in cases where domain knowledge is limited and underlying interactions are unknown, choosing the optimal set of features is often difficult. To mitigate this issue, we introduce a Multidata (M) causal feature selection approach that simultaneously processes an ensemble of time series datasets and produces a single set of causal drivers. This approach uses the causal discovery algorithms PC1 or PCMCI that are implemented in the Tigramite Python package. These algorithms utilize conditional independence tests to infer parts of the causal graph. Our causal feature selection approach filters out causally-spurious links before passing the remaining causal features as inputs to ML models (Multiple linear regression, Random Forest) that predict the targets. We apply our framework to the statistical intensity prediction of Western Pacific Tropical Cyclones (TC), for which it is often difficult to accurately choose drivers and their dimensionality reduction (time lags, vertical levels, and area-averaging). Using more stringent significance thresholds in the conditional independence tests helps eliminate spurious causal relationships, thus helping the ML model generalize better to unseen TC cases. M-PC1 with a reduced number of features outperforms M-PCMCI, non-causal ML, and other feature selection methods (lagged correlation, random), even slightly outperforming feature selection based on eXplainable Artificial Intelligence. The optimal causal drivers obtained from our causal feature selection help improve our understanding of underlying relationships and suggest new potential drivers of TC intensification.

Some patients with COVID-19 show changes in signs and symptoms such as temperature and oxygen saturation days before being positively tested for SARS-CoV-2, while others remain asymptomatic. It is important to identify these subgroups and to understand what biological and clinical predictors are related to these subgroups. This information will provide insights into how the immune system may respond differently to infection and can further be used to identify infected individuals. We propose a flexible nonparametric mixed-effects mixture model that identifies risk factors and classifies patients with biological changes. We model the latent probability of biological changes using a logistic regression model and trajectories in the latent groups using smoothing splines. We developed an EM algorithm to maximize the penalized likelihood for estimating all parameters and mean functions. We evaluate our methods by simulations and apply the proposed model to investigate changes in temperature in a cohort of COVID-19-infected hemodialysis patients.

We present a new approach for computing compact sketches that can be used to approximate the inner product between pairs of high-dimensional vectors. Based on the Weighted MinHash algorithm, our approach admits strong accuracy guarantees that improve on the guarantees of popular linear sketching approaches for inner product estimation, such as CountSketch and Johnson-Lindenstrauss projection. Specifically, while our method admits guarantees that exactly match linear sketching for dense vectors, it yields significantly lower error for sparse vectors with limited overlap between non-zero entries. Such vectors arise in many applications involving sparse data. They are also important in increasingly popular dataset search applications, where inner product sketches are used to estimate data covariance, conditional means, and other quantities involving columns in unjoined tables. We complement our theoretical results by showing that our approach empirically outperforms existing linear sketches and unweighted hashing-based sketches for sparse vectors.

The DARPA Lifelong Learning Machines (L2M) program seeks to yield advances in artificial intelligence (AI) systems so that they are capable of learning (and improving) continuously, leveraging data on one task to improve performance on another, and doing so in a computationally sustainable way. Performers on this program developed systems capable of performing a diverse range of functions, including autonomous driving, real-time strategy, and drone simulation. These systems featured a diverse range of characteristics (e.g., task structure, lifetime duration), and an immediate challenge faced by the program's testing and evaluation team was measuring system performance across these different settings. This document, developed in close collaboration with DARPA and the program performers, outlines a formalism for constructing and characterizing the performance of agents performing lifelong learning scenarios.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.

Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.

Policy gradient methods are often applied to reinforcement learning in continuous multiagent games. These methods perform local search in the joint-action space, and as we show, they are susceptable to a game-theoretic pathology known as relative overgeneralization. To resolve this issue, we propose Multiagent Soft Q-learning, which can be seen as the analogue of applying Q-learning to continuous controls. We compare our method to MADDPG, a state-of-the-art approach, and show that our method achieves better coordination in multiagent cooperative tasks, converging to better local optima in the joint action space.

北京阿比特科技有限公司