The general adwords problem has remained largely unresolved. We define a subcase called {\em $k$-TYPICAL}, $k \in \Zplus$, as follows: the total budget of all the bidders is sufficient to buy $k$ bids for each bidder. This seems a reasonable assumption for a "typical" instance, at least for moderate values of $k$. We give a randomized online algorithm, achieving a competitive ratio of $\left(1 - {1 \over e} - {1 \over k} \right)$, for this problem. We also give randomized online algorithms for other special cases of adwords. Another subcase, when bids are small compared to budgets, has been of considerable practical significance in ad auctions \cite{MSVV}. For this case, we give an optimal randomized online algorithm achieving a competitive ratio of $\left(1 - {1 \over e} \right)$. Previous algorithms for this case were based on LP-duality; the impact of our new approach remains to be seen. The key to these results is a simplification of the proof for RANKING, the optimal algorithm for online bipartite matching, given in \cite{KVV}. Our algorithms for adwords can be seen as natural extensions of RANKING.
In constrained convex optimization, existing methods based on the ellipsoid or cutting plane method do not scale well with the dimension of the ambient space. Alternative approaches such as Projected Gradient Descent only provide a computational benefit for simple convex sets such as Euclidean balls, where Euclidean projections can be performed efficiently. For other sets, the cost of the projections can be too high. To circumvent these issues, alternative methods based on the famous Frank-Wolfe algorithm have been studied and used. Such methods use a Linear Optimization Oracle at each iteration instead of Euclidean projections; the former can often be performed efficiently. Such methods have also been extended to the online and stochastic optimization settings. However, the Frank-Wolfe algorithm and its variants do not achieve the optimal performance, in terms of regret or rate, for general convex sets. What is more, the Linear Optimization Oracle they use can still be computationally expensive in some cases. In this paper, we move away from Frank-Wolfe style algorithms and present a new reduction that turns any algorithm A defined on a Euclidean ball (where projections are cheap) to an algorithm on a constrained set C contained within the ball, without sacrificing the performance of the original algorithm A by much. Our reduction requires O(T log T) calls to a Membership Oracle on C after T rounds, and no linear optimization on C is needed. Using our reduction, we recover optimal regret bounds [resp. rates], in terms of the number of iterations, in online [resp. stochastic] convex optimization. Our guarantees are also useful in the offline convex optimization setting when the dimension of the ambient space is large.
We present deterministic algorithms for the Hidden Subgroup Problem. The first algorithm, for abelian groups, achieves the same asymptotic worst-case query complexity as the optimal randomized algorithm, namely O($\sqrt{ n}\,$), where $n$ is the order of the group. The analogous algorithm for non-abelian groups comes within a $\sqrt{ \log n}$ factor of the optimal randomized query complexity. The best known randomized algorithm for the Hidden Subgroup Problem has expected query complexity that is sensitive to the input, namely O($\sqrt{ n/m}\,$), where $m$ is the order of the hidden subgroup. In the first version of this article (arXiv:2104.14436v1 [cs.DS]), we asked if there is a deterministic algorithm whose query complexity has a similar dependence on the order of the hidden subgroup. Prompted by this question, Ye and Li (arXiv:2110.00827v1 [cs.DS]) present deterministic algorithms for abelian groups which solve the problem with O($\sqrt{ n/m }\,$ ) queries, and find the hidden subgroup with O($\sqrt{ n (\log m) / m} + \log m$) queries. Moreover, they exhibit instances which show that in general, the deterministic query complexity of the problem may be o($\sqrt{ n/m } \,$), and that of finding the entire subgroup may also be o($\sqrt{ n/m } \,$) or even $\omega(\sqrt{ n/m } \,)$. We present a different deterministic algorithm for the Hidden Subgroup Problem that also has query complexity O($\sqrt{ n/m }\,$) for abelian groups. The algorithm is arguably simpler. Moreover, it works for non-abelian groups, and has query complexity O($\sqrt{ (n/m) \log (n/m) }\,$) for a large class of instances, such as those over supersolvable groups. We build on this to design deterministic algorithms to find the hidden subgroup for all abelian and some non-abelian instances, at the cost of a $\log m$ multiplicative factor increase in the query complexity.
We propose a deterministic Kaczmarz algorithm for solving linear systems $A\x=\b$. Different from previous Kaczmarz algorithms, we use reflections in each step of the iteration. This generates a series of points distributed with patterns on a sphere centered at a solution. Firstly, we prove that taking the average of $O(\eta/\epsilon)$ points leads to an effective approximation of the solution up to relative error $\epsilon$, where $\eta$ is a parameter depending on $A$ and can be bounded above by the square of the condition number. We also show how to select these points efficiently. From the numerical tests, our Kaczmarz algorithm usually converges more quickly than the (block) randomized Kaczmarz algorithms. Secondly, when the linear system is consistent, the Kaczmarz algorithm returns the solution that has the minimal distance to the initial vector. This gives a method to solve the least-norm problem. Finally, we prove that our Kaczmarz algorithm indeed solves the linear system $A^TW^{-1}A \x = A^TW^{-1} \b$, where $W$ is the low-triangular matrix such that $W+W^T=2AA^T$. The relationship between this linear system and the original one is studied.
Inspired by branch-and-bound and cutting plane proofs in mixed-integer optimization and proof complexity, we develop a general approach via Hoffman's Helly systems. This helps to distill the main ideas behind optimality and infeasibility certificates in optimization. The first part of the paper formalizes the notion of a certificate and its size in this general setting. The second part of the paper establishes lower and upper bounds on the sizes of these certificates in various different settings. We show that some important techniques existing in the literature are purely combinatorial in nature and do not depend on any underlying geometric notions.
Babaioff et al. [BIK2007] introduced the matroid secretary problem in 2007, a natural extension of the classic single-choice secretary problem to matroids, and conjectured that a constant-competitive online algorithm exists. The conjecture still remains open despite substantial partial progress, including constant-competitive algorithms for numerous special cases of matroids, and an $O(\log \log \text{rank})$-competitive algorithm in the general case. Many of these algorithms follow principled frameworks. The limits of these frameworks are previously unstudied, and prior work establishes only that a handful of particular algorithms cannot resolve the matroid secretary conjecture. We initiate the study of impossibility results for frameworks to resolve this conjecture. We establish impossibility results for a natural class of greedy algorithms and for randomized partition algorithms, both of which contain known algorithms that resolve special cases.
We study the problem of \emph{dynamic regret minimization} in $K$-armed Dueling Bandits under non-stationary or time varying preferences. This is an online learning setup where the agent chooses a pair of items at each round and observes only a relative binary `win-loss' feedback for this pair, sampled from an underlying preference matrix at that round. We first study the problem of static-regret minimization for adversarial preference sequences and design an efficient algorithm with $O(\sqrt{KT})$ high probability regret. We next use similar algorithmic ideas to propose an efficient and provably optimal algorithm for dynamic-regret minimization under two notions of non-stationarities. In particular, we establish $\tO(\sqrt{SKT})$ and $\tO({V_T^{1/3}K^{1/3}T^{2/3}})$ dynamic-regret guarantees, $S$ being the total number of `effective-switches' in the underlying preference relations and $V_T$ being a measure of `continuous-variation' non-stationarity. The complexity of these problems have not been studied prior to this work despite the practicability of non-stationary environments in real world systems. We justify the optimality of our algorithms by proving matching lower bound guarantees under both the above-mentioned notions of non-stationarities. Finally, we corroborate our results with extensive simulations and compare the efficacy of our algorithms over state-of-the-art baselines.
Consider the following social choice problem. Suppose we have a set of $n$ voters and $m$ candidates that lie in a metric space. The goal is to design a mechanism to choose a candidate whose average distance to the voters is as small as possible. However, the mechanism does not get direct access to the metric space. Instead, it gets each voter's ordinal ranking of the candidates by distance. Given only this partial information, what is the smallest worst-case approximation ratio (known as the distortion) that a mechanism can guarantee? A simple example shows that no deterministic mechanism can guarantee distortion better than $3$, and no randomized mechanism can guarantee distortion better than $2$. It has been conjectured that both of these lower bounds are optimal, and recently, Gkatzelis, Halpern, and Shah proved this conjecture for deterministic mechanisms. We disprove the conjecture for randomized mechanisms for $m \geq 3$ by constructing elections for which no randomized mechanism can guarantee distortion better than $2.0261$ for $m = 3$, $2.0496$ for $m = 4$, up to $2.1126$ as $m \to \infty$. We obtain our lower bounds by identifying a class of simple metrics that appear to capture much of the hardness of the problem, and we show that any randomized mechanism must have high distortion on one of these metrics. We provide a nearly matching upper bound for this restricted class of metrics as well. Finally, we conjecture that these bounds give the optimal distortion for every $m$, and provide a proof for $m = 3$, thereby resolving that case.
We study streaming algorithms for two fundamental geometric problems: computing the cost of a Minimum Spanning Tree (MST) of an $n$-point set $X \subset \{1,2,\dots,\Delta\}^d$, and computing the Earth Mover Distance (EMD) between two multi-sets $A,B \subset \{1,2,\dots,\Delta\}^d$ of size $n$. We consider the turnstile model, where points can be added and removed. We give a one-pass streaming algorithm for MST and a two-pass streaming algorithm for EMD, both achieving an approximation factor of $\tilde{O}(\log n)$ and using polylog$(n,d,\Delta)$-space only. Furthermore, our algorithm for EMD can be compressed to a single pass with a small additive error. Previously, the best known sublinear-space streaming algorithms for either problem achieved an approximation of $O(\min\{ \log n , \log (\Delta d)\} \log n)$ [Andoni-Indyk-Krauthgamer '08, Backurs-Dong-Indyk-Razenshteyn-Wagner '20]. For MST, we also prove that any constant space streaming algorithm can only achieve an approximation of $\Omega(\log n)$, analogous to the $\Omega(\log n)$ lower bound for EMD of [Andoni-Indyk-Krauthgamer '08]. Our algorithms are based on an improved analysis of a recursive space partitioning method known generically as the Quadtree. Specifically, we show that the Quadtree achieves an $\tilde{O}(\log n)$ approximation for both EMD and MST, improving on the $O(\min\{ \log n , \log (\Delta d)\} \log n)$ approximation of [Andoni-Indyk-Krauthgamer '08, Backurs-Dong-Indyk-Razenshteyn-Wagner '20].
Online allocation problems with resource constraints are central problems in revenue management and online advertising. In these problems, requests arrive sequentially during a finite horizon and, for each request, a decision maker needs to choose an action that consumes a certain amount of resources and generates reward. The objective is to maximize cumulative rewards subject to a constraint on the total consumption of resources. In this paper, we consider a data-driven setting in which the reward and resource consumption of each request are generated using an input model that is unknown to the decision maker. We design a general class of algorithms that attain good performance in various input models without knowing which type of input they are facing. In particular, our algorithms are asymptotically optimal under independent and identically distributed inputs as well as various non-stationary stochastic input models, and they attain an asymptotically optimal fixed competitive ratio when the input is adversarial. Our algorithms operate in the Lagrangian dual space: they maintain a dual multiplier for each resource that is updated using online mirror descent. By choosing the reference function accordingly, we recover the dual sub-gradient descent and dual multiplicative weights update algorithm. The resulting algorithms are simple, fast, and do not require convexity in the revenue function, consumption function and action space, in contrast to existing methods for online allocation problems. We discuss applications to network revenue management, online bidding in repeated auctions with budget constraints, online proportional matching with high entropy, and personalized assortment optimization with limited inventory.
We propose accelerated randomized coordinate descent algorithms for stochastic optimization and online learning. Our algorithms have significantly less per-iteration complexity than the known accelerated gradient algorithms. The proposed algorithms for online learning have better regret performance than the known randomized online coordinate descent algorithms. Furthermore, the proposed algorithms for stochastic optimization exhibit as good convergence rates as the best known randomized coordinate descent algorithms. We also show simulation results to demonstrate performance of the proposed algorithms.