We study streaming algorithms for two fundamental geometric problems: computing the cost of a Minimum Spanning Tree (MST) of an $n$-point set $X \subset \{1,2,\dots,\Delta\}^d$, and computing the Earth Mover Distance (EMD) between two multi-sets $A,B \subset \{1,2,\dots,\Delta\}^d$ of size $n$. We consider the turnstile model, where points can be added and removed. We give a one-pass streaming algorithm for MST and a two-pass streaming algorithm for EMD, both achieving an approximation factor of $\tilde{O}(\log n)$ and using polylog$(n,d,\Delta)$-space only. Furthermore, our algorithm for EMD can be compressed to a single pass with a small additive error. Previously, the best known sublinear-space streaming algorithms for either problem achieved an approximation of $O(\min\{ \log n , \log (\Delta d)\} \log n)$ [Andoni-Indyk-Krauthgamer '08, Backurs-Dong-Indyk-Razenshteyn-Wagner '20]. For MST, we also prove that any constant space streaming algorithm can only achieve an approximation of $\Omega(\log n)$, analogous to the $\Omega(\log n)$ lower bound for EMD of [Andoni-Indyk-Krauthgamer '08]. Our algorithms are based on an improved analysis of a recursive space partitioning method known generically as the Quadtree. Specifically, we show that the Quadtree achieves an $\tilde{O}(\log n)$ approximation for both EMD and MST, improving on the $O(\min\{ \log n , \log (\Delta d)\} \log n)$ approximation of [Andoni-Indyk-Krauthgamer '08, Backurs-Dong-Indyk-Razenshteyn-Wagner '20].
We study the parameterized complexity of various classic vertex-deletion problems such as Odd cycle transversal, Vertex planarization, and Chordal vertex deletion under hybrid parameterizations. Existing FPT algorithms for these problems either focus on the parameterization by solution size, detecting solutions of size $k$ in time $f(k) \cdot n^{O(1)}$, or width parameterizations, finding arbitrarily large optimal solutions in time $f(w) \cdot n^{O(1)}$ for some width measure $w$ like treewidth. We unify these lines of research by presenting FPT algorithms for parameterizations that can simultaneously be arbitrarily much smaller than the solution size and the treewidth. We consider two classes of parameterizations which are relaxations of either treedepth of treewidth. They are related to graph decompositions in which subgraphs that belong to a target class H (e.g., bipartite or planar) are considered simple. First, we present a framework for computing approximately optimal decompositions for miscellaneous classes H. Namely, if the cost of an optimal decomposition is $k$, we show how to find a decomposition of cost $k^{O(1)}$ in time $f(k) \cdot n^{O(1)}$. This is applicable to any graph class H for which the corresponding vertex-deletion problem admits a constant-factor approximation algorithm or an FPT algorithm paramaterized by the solution size. Secondly, we exploit the constructed decompositions for solving vertex-deletion problems by extending ideas from algorithms using iterative compression and the finite state property. For the three mentioned vertex-deletion problems, and all problems which can be formulated as hitting a finite set of connected forbidden (a) minors or (b) (induced) subgraphs, we obtain FPT algorithms with respect to both studied parameterizations.
We study the classical expander codes, introduced by Sipser and Spielman \cite{SS96}. Given any constants $0< \alpha, \varepsilon < 1/2$, and an arbitrary bipartite graph with $N$ vertices on the left, $M < N$ vertices on the right, and left degree $D$ such that any left subset $S$ of size at most $\alpha N$ has at least $(1-\varepsilon)|S|D$ neighbors, we show that the corresponding linear code given by parity checks on the right has distance at least roughly $\frac{\alpha N}{2 \varepsilon }$. This is strictly better than the best known previous result of $2(1-\varepsilon ) \alpha N$ \cite{Sudan2000note, Viderman13b} whenever $\varepsilon < 1/2$, and improves the previous result significantly when $\varepsilon $ is small. Furthermore, we show that this distance is tight in general, thus providing a complete characterization of the distance of general expander codes. Next, we provide several efficient decoding algorithms, which vastly improve previous results in terms of the fraction of errors corrected, whenever $\varepsilon < \frac{1}{4}$. Finally, we also give a bound on the list-decoding radius of general expander codes, which beats the classical Johnson bound in certain situations (e.g., when the graph is almost regular and the code has a high rate). Our techniques exploit novel combinatorial properties of bipartite expander graphs. In particular, we establish a new size-expansion tradeoff, which may be of independent interests.
Can we sense our location in an unfamiliar environment by taking a sublinear-size sample of our surroundings? Can we efficiently encrypt a message that only someone physically close to us can decrypt? To solve this kind of problems, we introduce and study a new type of hash functions for finding shifts in sublinear time. A function $h:\{0,1\}^n\to \mathbb{Z}_n$ is a $(d,\delta)$ {\em locality-preserving hash function for shifts} (LPHS) if: (1) $h$ can be computed by (adaptively) querying $d$ bits of its input, and (2) $\Pr [ h(x) \neq h(x \ll 1) + 1 ] \leq \delta$, where $x$ is random and $\ll 1$ denotes a cyclic shift by one bit to the left. We make the following contributions. * Near-optimal LPHS via Distributed Discrete Log: We establish a general two-way connection between LPHS and algorithms for distributed discrete logarithm in the generic group model. Using such an algorithm of Dinur et al. (Crypto 2018), we get LPHS with near-optimal error of $\delta=\tilde O(1/d^2)$. This gives an unusual example for the usefulness of group-based cryptography in a post-quantum world. We extend the positive result to non-cyclic and worst-case variants of LPHS. * Multidimensional LPHS: We obtain positive and negative results for a multidimensional extension of LPHS, making progress towards an optimal 2-dimensional LPHS. * Applications: We demonstrate the usefulness of LPHS by presenting cryptographic and algorithmic applications. In particular, we apply multidimensional LPHS to obtain an efficient "packed" implementation of homomorphic secret sharing and a sublinear-time implementation of location-sensitive encryption whose decryption requires a significantly overlapping view.
In this paper, we consider the distributed optimization problem where $n$ agents, each possessing a local cost function, collaboratively minimize the average of the local cost functions over a connected network. To solve the problem, we propose a distributed random reshuffling (D-RR) algorithm that combines the classical distributed gradient descent (DGD) method and Random Reshuffling (RR). We show that D-RR inherits the superiority of RR for both smooth strongly convex and smooth nonconvex objective functions. In particular, for smooth strongly convex objective functions, D-RR achieves $\mathcal{O}(1/T^2)$ rate of convergence (here, $T$ counts the total number of iterations) in terms of the squared distance between the iterate and the unique minimizer. When the objective function is assumed to be smooth nonconvex and has Lipschitz continuous component functions, we show that D-RR drives the squared norm of gradient to $0$ at a rate of $\mathcal{O}(1/T^{2/3})$. These convergence results match those of centralized RR (up to constant factors).
Consider a random graph process with $n$ vertices corresponding to points $v_{i} \sim {Unif}[0,1]$ embedded randomly in the interval, and where edges are inserted between $v_{i}, v_{j}$ independently with probability given by the graphon $w(v_{i},v_{j}) \in [0,1]$. Following Chuangpishit et al. (2015), we call a graphon $w$ diagonally increasing if, for each $x$, $w(x,y)$ decreases as $y$ moves away from $x$. We call a permutation $\sigma \in S_{n}$ an ordering of these vertices if $v_{\sigma(i)} < v_{\sigma(j)}$ for all $i < j$, and ask: how can we accurately estimate $\sigma$ from an observed graph? We present a randomized algorithm with output $\hat{\sigma}$ that, for a large class of graphons, achieves error $\max_{1 \leq i \leq n} | \sigma(i) - \hat{\sigma}(i)| = O^{*}(\sqrt{n})$ with high probability; we also show that this is the best-possible convergence rate for a large class of algorithms and proof strategies. Under an additional assumption that is satisfied by some popular graphon models, we break this "barrier" at $\sqrt{n}$ and obtain the vastly better rate $O^{*}(n^{\epsilon})$ for any $\epsilon > 0$. These improved seriation bounds can be combined with previous work to give more efficient and accurate algorithms for related tasks, including: estimating diagonally increasing graphons, and testing whether a graphon is diagonally increasing.
We present a $(1- \varepsilon)$-approximation algorithms for maximum cardinality matchings in disk intersection graphs -- all with near linear running time. We also present estimation algorithm that returns $(1\pm \varepsilon)$-approximation to the size of such matchings -- this algorithms run in linear time for unit disks, and $O(n \log n)$ for general disks (as long as the density is relatively small).
Let $\kappa(s,t)$ denote the maximum number of internally disjoint paths in an undirected graph $G$. We consider designing a data structure that includes a list of cuts, and answers the following query: given $s,t \in V$, determine whether $\kappa(s,t) \leq k$, and if so, return a pointer to an $st$-cut of size $\leq k$ (or to a minimum $st$-cut) in the list. A trivial data structure that includes a list of $n(n-1)/2$ cuts and requires $\Theta(kn^2)$ space can answer each query in $O(1)$ time. We obtain the following results. In the case when $G$ is $k$-connected, we show that $n$ cuts suffice, and that these cuts can be partitioned into $(2k+1)$ laminar families. Thus using space $O(kn)$ we can answers each min-cut query in $O(1)$ time, slightly improving and substantially simplifying a recent result of Pettie and Yin. We then extend this data structure to subset $k$-connectivity. In the general case we show that $(2k+1)n$ cuts suffice to return an $st$-cut of size $\leq k$,and a list of size $k(k+2)n$ contains a minimum $st$-cut for every $s,t \in V$. Combining our subset $k$-connectivity data structure with the data structure of Hsu and Lu for checking $k$-connectivity, we give an $O(k^2 n)$ space data structure that returns an $st$-cut of size $\leq k$ in $O(\log k)$ time, while $O(k^3 n)$ space enables to return a minimum $st$-cut.
Motivated by applications in instance selection, we introduce the star discrepancy subset selection problem, which consists of finding a subset of m out of n points that minimizes the star discrepancy. First, we show that this problem is NP-hard. Then, we introduce a mixed integer linear formulation (MILP) and a combinatorial branch-and-bound (BB) algorithm for the star discrepancy subset selection problem and we evaluate both approaches against random subset selection and a greedy construction on different use-cases in dimension two and three. Our results show that the MILP and BB are efficient in dimension two for large and small $m/n$ ratio, respectively, and for not too large n. However, the performance of both approaches decays strongly for larger dimensions and set sizes. As a side effect of our empirical comparisons we obtain point sets of discrepancy values that are much smaller than those of common low-discrepancy sequences, random point sets, and of Latin Hypercube Sampling. This suggests that subset selection could be an interesting approach for generating point sets of small discrepancy value.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.