In real life situations often paired comparisons involving alternatives of either full or partial profiles to mitigate cognitive burden are presented. For this situation the problem of finding optimal designs is considered in the presence of second-order interactions when all attributes have general common number of levels.
Disagreement remains on what the target estimand should be for population-adjusted indirect treatment comparisons. This debate is of central importance for policy-makers and applied practitioners in health technology assessment. Misunderstandings are based on properties inherent to estimators, not estimands, and on generalizing conclusions based on linear regression to non-linear models. Estimators of marginal estimands need not be unadjusted and may be covariate-adjusted. The population-level interpretation of conditional estimates follows from collapsibility and does not necessarily hold for the underlying conditional estimands. For non-collapsible effect measures, neither conditional estimates nor estimands have a population-level interpretation. Estimators of marginal effects tend to be more precise and efficient than estimators of conditional effects where the measure of effect is non-collapsible. In any case, such comparisons are inconsequential for estimators targeting distinct estimands. Statistical efficiency should not drive the choice of the estimand. On the other hand, the estimand, selected on the basis of relevance to decision-making, should drive the choice of the most efficient estimator. Health technology assessment agencies make reimbursement decisions at the population level. Therefore, marginal estimands are required. Current pairwise population adjustment methods such as matching-adjusted indirect comparison are restricted to target marginal estimands that are specific to the comparator study sample. These may not be relevant for decision-making. Multilevel network meta-regression (ML-NMR) can potentially target marginal estimands in any population of interest. Such population could be characterized by decision-makers using increasingly available ``real-world'' data sources. Therefore, ML-NMR presents new directions and abundant opportunities for evidence synthesis.
Weighting methods are a common tool to de-bias estimates of causal effects. And though there are an increasing number of seemingly disparate methods, many of them can be folded into one unifying regime: Causal Optimal Transport. This new method directly targets distributional balance by minimizing optimal transport distances between treatment and control groups or, more generally, between a source and target population. Our approach is semiparametrically efficient and model-free but can also incorporate moments or any other important functions of covariates that the researcher desires to balance. We find that Causal Optimal Transport outperforms competitor methods when both the propensity score and outcome models are misspecified, indicating it is a robust alternative to common weighting methods. Finally, we demonstrate the utility of our method in an external control study examining the effect of misoprostol versus oxytocin for the treatment of post-partum hemorrhage.
We consider a pointwise tracking optimal control problem for a semilinear elliptic partial differential equation. We derive the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. We devise two strategies of discretization to approximate a solution of the optimal control problem: a semidiscrete scheme where the control variable is not discretized -- the so-called variational discretization approach -- and a fully discrete scheme where the control variable is discretized with piecewise constant functions. For both solution techniques, we analyze convergence properties of discretizations and derive error estimates.
This work provides a theoretical framework for the pose estimation problem using total least squares for vector observations from landmark features. First, the optimization framework is formulated with observation vectors extracted from point cloud features. Then, error-covariance expressions are derived. The attitude and position solutions obtained via the derived optimization framework are proven to reach the bounds defined by the Cram\'er-Rao lower bound under the small-angle approximation of attitude errors. The measurement data for the simulation of this problem is provided through a series of vector observation scans, and a fully populated observation noise-covariance matrix is assumed as the weight in the cost function to cover the most general case of the sensor uncertainty. Here, previous derivations are expanded for the pose estimation problem to include more generic correlations in the errors than previous cases involving an isotropic noise assumption. The proposed solution is simulated in a Monte-Carlo framework to validate the error-covariance analysis.
Calculating the expected information gain in optimal Bayesian experimental design typically relies on nested Monte Carlo sampling. When the model also contains nuisance parameters, this introduces a second inner loop. We propose and derive a small-noise approximation for this additional inner loop. The computational cost of our method can be further reduced by applying a Laplace approximation to the remaining inner loop. Thus, we present two methods, the small-noise Double-loop Monte Carlo and small-noise Monte Carlo Laplace methods. Moreover, we demonstrate that the total complexity of these two approaches remains comparable to the case without nuisance uncertainty. To assess the efficiency of these methods, we present three examples, and the last example includes the partial differential equation for the electrical impedance tomography experiment for composite laminate materials.
Group synchronization refers to estimating a collection of group elements from the noisy pairwise measurements. Such a nonconvex problem has received much attention from numerous scientific fields including computer vision, robotics, and cryo-electron microscopy. In this paper, we focus on the orthogonal group synchronization problem with general additive noise models under incomplete measurements, which is much more general than the commonly considered setting of complete measurements. Characterizations of the orthogonal group synchronization problem are given from perspectives of optimality conditions as well as fixed points of the projected gradient ascent method which is also known as the generalized power method (GPM). It is well worth noting that these results still hold even without generative models. In the meantime, we derive the local error bound property for the orthogonal group synchronization problem which is useful for the convergence rate analysis of different algorithms and can be of independent interest. Finally, we prove the linear convergence result of the GPM to a global maximizer under a general additive noise model based on the established local error bound property. Our theoretical convergence result holds under several deterministic conditions which can cover certain cases with adversarial noise, and as an example we specialize it to the setting of the Erd\"os-R\'enyi measurement graph and Gaussian noise.
Deep reinforcement learning has enabled human-level or even super-human performance in various types of games. However, the amount of exploration required for learning is often quite large. Deep reinforcement learning also has super-human performance in that no human being would be able to achieve such amounts of exploration. To address this problem, we focus on the \textit{satisficing} policy, which is a qualitatively different approach from that of existing optimization algorithms. Thus, we propose Linear RS (LinRS), which is a type of satisficing algorithm and a linear extension of risk-sensitive satisficing (RS), for application to a wider range of tasks. The generalization of RS provides an algorithm to reduce the volume of exploratory actions by adopting a different approach from existing optimization algorithms. LinRS utilizes linear regression and multiclass classification to linearly approximate both the action value and proportion of action selections required in the RS calculation. The results of our experiments indicate that LinRS reduced the number of explorations and run time compared to those of existing algorithms in contextual bandit problems. These results suggest that a further generalization of satisficing algorithms may be useful for complex environments, including those that are to be handled with deep reinforcement learning.
Reconfigurable intelligent surface (RIS) or intelligent reflecting surface (IRS) has recently been envisioned as one of the most promising technologies in the future sixth-generation (6G) communications. In this paper, we consider the joint optimization of the transmit beamforming at the base station (BS) and the phase shifts at the RIS for an RIS-aided wireless communication system with both hardware impairments and imperfect channel state information (CSI). Specifically, we assume both the BS-user channel and the BS-RIS-user channel are imperfect due to the channel estimation error, and we consider the channel estimation error under the statistical CSI error model. Then, the transmit power of the BS is minimized, subject to the outage probability constraint and the unit-modulus constraints on the reflecting elements. By using Bernstein-type inequality and semidefinite relaxation (SDR) to reformulate the constraints, we transform the optimization problem into a semidefinite programming (SDP) problem. Numerical results show that the proposed robust design algorithm can ensure communication quality of the user in the presence of both hardware impairments and imperfect CSI.
Longitudinal studies are often subject to missing data. The ICH E9(R1) addendum addresses the importance of defining a treatment effect estimand with the consideration of intercurrent events. Jump-to-reference (J2R) is one classically envisioned control-based scenario for the treatment effect evaluation using the hypothetical strategy, where the participants in the treatment group after intercurrent events are assumed to have the same disease progress as those with identical covariates in the control group. We establish new estimators to assess the average treatment effect based on a proposed potential outcomes framework under J2R. Various identification formulas are constructed under the assumptions addressed by J2R, motivating estimators that rely on different parts of the observed data distribution. Moreover, we obtain a novel estimator inspired by the efficient influence function, with multiple robustness in the sense that it achieves $n^{1/2}$-consistency if any pairs of multiple nuisance functions are correctly specified, or if the nuisance functions converge at a rate not slower than $n^{-1/4}$ when using flexible modeling approaches. The finite-sample performance of the proposed estimators is validated in simulation studies and an antidepressant clinical trial.
We present R-LINS, a lightweight robocentric lidar-inertial state estimator, which estimates robot ego-motion using a 6-axis IMU and a 3D lidar in a tightly-coupled scheme. To achieve robustness and computational efficiency even in challenging environments, an iterated error-state Kalman filter (ESKF) is designed, which recursively corrects the state via repeatedly generating new corresponding feature pairs. Moreover, a novel robocentric formulation is adopted in which we reformulate the state estimator concerning a moving local frame, rather than a fixed global frame as in the standard world-centric lidar-inertial odometry(LIO), in order to prevent filter divergence and lower computational cost. To validate generalizability and long-time practicability, extensive experiments are performed in indoor and outdoor scenarios. The results indicate that R-LINS outperforms lidar-only and loosely-coupled algorithms, and achieve competitive performance as the state-of-the-art LIO with close to an order-of-magnitude improvement in terms of speed.