亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the context of the interaction between a moving plane shock wave and an inclined wall (wedge), it is possible to distinguish four distinct shock reflection configurations. These shock wave reflections, which depend on the characteristics of the incident shock wave and the geometry of the surface that it interacts with, are (i) regular reflection (RR), (ii) simple Mach reflection (SMR), (iii) transition Mach reflection (TMR), and (iv) double Mach reflection (DMR). The impact of these shock reflections on flow properties can be significant so understanding them is important when predicting the behavior of shock waves in more complex flow configurations. Previous research works have explored the referred shock reflections through both numerical and experimental approaches, employing various gases and different flow and geometrical configurations. The present study involves the use of a high-fidelity computational fluid dynamics (CFD) tool, known as PeleC, which is a compressible solver based on AMReX specifically designed to handle complex flow configurations. Accordingly, by solving the time-dependent Euler equations for various 2D flow configurations, this work studies shock wave reflections accounting for four different Mach-based operating conditions and compares and analyzes the resulting density profiles on the wedge wall with experimental data. To strike a balance between model accuracy and computational efficiency, adaptive mesh refinement (AMR) is incorporated, and a mesh independence study is performed by varying the number of AMR levels. The results of this study demonstrate the capabilities of the CFD tool employed as it accurately predicts the sensitivity of wave characteristics to different operating conditions.

相關內容

We consider contextual bandit problems with knapsacks [CBwK], a problem where at each round, a scalar reward is obtained and vector-valued costs are suffered. The learner aims to maximize the cumulative rewards while ensuring that the cumulative costs are lower than some predetermined cost constraints. We assume that contexts come from a continuous set, that costs can be signed, and that the expected reward and cost functions, while unknown, may be uniformly estimated -- a typical assumption in the literature. In this setting, total cost constraints had so far to be at least of order $T^{3/4}$, where $T$ is the number of rounds, and were even typically assumed to depend linearly on $T$. We are however motivated to use CBwK to impose a fairness constraint of equalized average costs between groups: the budget associated with the corresponding cost constraints should be as close as possible to the natural deviations, of order $\sqrt{T}$. To that end, we introduce a dual strategy based on projected-gradient-descent updates, that is able to deal with total-cost constraints of the order of $\sqrt{T}$ up to poly-logarithmic terms. This strategy is more direct and simpler than existing strategies in the literature. It relies on a careful, adaptive, tuning of the step size.

Obtaining the solutions of partial differential equations based on various machine learning methods has drawn more and more attention in the fields of scientific computation and engineering applications. In this work, we first propose a coupled Extreme Learning Machine (called CELM) method incorporated with the physical laws to solve a class of fourth-order biharmonic equations by reformulating it into two well-posed Poisson problems. In addition, some activation functions including tangent, gauss, sine, and trigonometric (sin+cos) functions are introduced to assess our CELM method. Notably, the sine and trigonometric functions demonstrate a remarkable ability to effectively minimize the approximation error of the CELM model. In the end, several numerical experiments are performed to study the initializing approaches for both the weights and biases of the hidden units in our CELM model and explore the required number of hidden units. Numerical results show the proposed CELM algorithm is high-precision and efficient to address the biharmonic equation in both regular and irregular domains.

Breaking down a document or a conversation into multiple contiguous segments based on its semantic structure is an important and challenging problem in NLP, which can assist many downstream tasks. However, current works on topic segmentation often focus on segmentation of structured texts. In this paper, we comprehensively analyze the generalization capabilities of state-of-the-art topic segmentation models on unstructured texts. We find that: (a) Current strategies of pre-training on a large corpus of structured text such as Wiki-727K do not help in transferability to unstructured conversational data. (b) Training from scratch with only a relatively small-sized dataset of the target unstructured domain improves the segmentation results by a significant margin. We stress-test our proposed Topic Segmentation approach by experimenting with multiple loss functions, in order to mitigate effects of imbalance in unstructured conversational datasets. Our empirical evaluation indicates that Focal Loss function is a robust alternative to Cross-Entropy and re-weighted Cross-Entropy loss function when segmenting unstructured and semi-structured chats.

We provide several new results on the sample complexity of vector-valued linear predictors (parameterized by a matrix), and more generally neural networks. Focusing on size-independent bounds, where only the Frobenius norm distance of the parameters from some fixed reference matrix $W_0$ is controlled, we show that the sample complexity behavior can be surprisingly different than what we may expect considering the well-studied setting of scalar-valued linear predictors. This also leads to new sample complexity bounds for feed-forward neural networks, tackling some open questions in the literature, and establishing a new convex linear prediction problem that is provably learnable without uniform convergence.

Shape optimization with respect to eigenvalues of a cavity plays an important role in the design of new resonators or in the optimization of existing ones. In our paper, we propose a gradient-based optimization scheme, which we enhance with closed-form shape derivatives of the system matrices. Based on these, we can compute accurate derivatives of eigenvalues, eigenmodes and the cost function with respect to the geometry, which significantly reduces the computational effort of the optimizer. We demonstrate our work by applying it to the 9-cell TESLA cavity, for which we tune the design parameters of the computational model to match the design criteria for devices in realistic use cases. Since eigenvalues may cross during the shape optimization of a cavity, we propose a new algorithm based on an eigenvalue matching procedure, to ensure the optimization of the desired mode in order to also enable successful matching along large shape variations.

Two-stage stochastic optimization is a framework for modeling uncertainty, where we have a probability distribution over possible realizations of the data, called scenarios, and decisions are taken in two stages: we make first-stage decisions knowing only the underlying distribution and before a scenario is realized, and may take additional second-stage recourse actions after a scenario is realized. The goal is typically to minimize the total expected cost. A criticism of this model is that the underlying probability distribution is itself often imprecise! To address this, a versatile approach that has been proposed is the {\em distributionally robust 2-stage model}: given a collection of probability distributions, our goal now is to minimize the maximum expected total cost with respect to a distribution in this collection. We provide a framework for designing approximation algorithms in such settings when the collection is a ball around a central distribution and the central distribution is accessed {\em only via a sampling black box}. We first show that one can utilize the {\em sample average approximation} (SAA) method to reduce the problem to the case where the central distribution has {\em polynomial-size} support. We then show how to approximately solve a fractional relaxation of the SAA (i.e., polynomial-scenario central-distribution) problem. By complementing this via LP-rounding algorithms that provide {\em local} (i.e., per-scenario) approximation guarantees, we obtain the {\em first} approximation algorithms for the distributionally robust versions of a variety of discrete-optimization problems including set cover, vertex cover, edge cover, facility location, and Steiner tree, with guarantees that are, except for set cover, within $O(1)$-factors of the guarantees known for the deterministic version of the problem.

In this paper, we present a new approach to obtain symmetric tiles with curved edges. Our approach is based on using higher-order Voronoi sites that are closed under wallpaper symmetries. The resulting Voronoi tessellations provide us with symmetric tiles with curved edges. We have developed a web application that provides real-time tile design. Our application can be found at //voronoi.viz.tamu.edu. One of our key findings in this paper is that not all symmetry operations are useful for creating curved tiles. In particular, all symmetries that use mirror operation produce straight lines that are useless for creating new tiles. This result is interesting because it suggests that we need to avoid mirror transformations to produce unusual space-filling tiles in 2D and 3D using Voronoi tessellations.

Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.

As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司