亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a method for the description and simulation of the nonlinear dynamics of slender structures modeled as Cosserat rods. It is based on interpreting the strains and the generalized velocities of the cross sections as basic variables and elements of the special Euclidean algebra. This perspective emerges naturally from the evolution equations for strands, that are one-dimensional submanifolds, of the special Euclidean group. The discretization of the corresponding equations for the three-dimensional motion of a Cosserat rod is performed, in space, by using a staggered grid. The time evolution is then approximated with a semi-implicit method. Within this approach we can easily include dissipative effects due to both the action of external forces and the presence of internal mechanical dissipation. The comparison with results obtained with different schemes shows the effectiveness of the proposed method, which is able to provide very good predictions of nonlinear dynamical effects and shows competitive computation times also as an energy-minimizing method to treat static problems.

相關內容

Dynamical systems are widely used in science and engineering to model systems consisting of several interacting components. Often, they can be given a causal interpretation in the sense that they not only model the evolution of the states of the system's components over time, but also describe how their evolution is affected by external interventions on the system that perturb the dynamics. We introduce the formal framework of structural dynamical causal models (SDCMs) that explicates the causal semantics of the system's components as part of the model. SDCMs represent a dynamical system as a collection of stochastic processes and specify the basic causal mechanisms that govern the dynamics of each component as a structured system of random differential equations of arbitrary order. SDCMs extend the versatile causal modeling framework of structural causal models (SCMs), also known as structural equation models (SEMs), by explicitly allowing for time-dependence. An SDCM can be thought of as the stochastic-process version of an SCM, where the static random variables of the SCM are replaced by dynamic stochastic processes and their derivatives. We provide the foundations for a theory of SDCMs, by (i) formally defining SDCMs, their solutions, stochastic interventions, and a graphical representation; (ii) studying existence and uniqueness of the solutions for given initial conditions; (iii) discussing under which conditions SDCMs equilibrate to SCMs as time tends to infinity; (iv) relating the properties of the SDCM to those of the equilibrium SCM. This correspondence enables one to leverage the wealth of statistical tools and discovery methods available for SCMs when studying the causal semantics of a large class of stochastic dynamical systems. The theory is illustrated with several well-known examples from different scientific domains.

The logistic and probit link functions are the most common choices for regression models with a binary response. However, these choices are not robust to the presence of outliers/unexpected observations. The robit link function, which is equal to the inverse CDF of the Student's $t$-distribution, provides a robust alternative to the probit and logistic link functions. A multivariate normal prior for the regression coefficients is the standard choice for Bayesian inference in robit regression models. The resulting posterior density is intractable and a Data Augmentation (DA) Markov chain is used to generate approximate samples from the desired posterior distribution. Establishing geometric ergodicity for this DA Markov chain is important as it provides theoretical guarantees for asymptotic validity of MCMC standard errors for desired posterior expectations/quantiles. Previous work [Roy(2012)] established geometric ergodicity of this robit DA Markov chain assuming (i) the sample size $n$ dominates the number of predictors $p$, and (ii) an additional constraint which requires the sample size to be bounded above by a fixed constant which depends on the design matrix $X$. In particular, modern high-dimensional settings where $n < p$ are not considered. In this work, we show that the robit DA Markov chain is trace-class (i.e., the eigenvalues of the corresponding Markov operator are summable) for arbitrary choices of the sample size $n$, the number of predictors $p$, the design matrix $X$, and the prior mean and variance parameters. The trace-class property implies geometric ergodicity. Moreover, this property allows us to conclude that the sandwich robit chain (obtained by inserting an inexpensive extra step in between the two steps of the DA chain) is strictly better than the robit DA chain in an appropriate sense.

We give new polynomial lower bounds for a number of dynamic measure problems in computational geometry. These lower bounds hold in the the Word-RAM model, conditioned on the hardness of either the 3SUM problem or the Online Matrix-Vector Mutliplication problem [Henzinger et al., STOC 2015]. In particular we get lower bounds in the incremental and fully-dynamic settings for counting maximal or extremal points in R^3, different variants of Klee's Measure Problem, problems related to finding the largest empty disk in a set of points, and querying the size of the i'th convex layer in a planar set of points. While many conditional lower bounds for dynamic data structures have been proven since the seminal work of Patrascu [STOC 2010], few of them relate to computational geometry problems. This is the first paper focusing on this topic. The problems we consider can all be solved in O(n log n) time in the static case and their dynamic versions have mostly been approached from the perspective of improving known upper bounds. One exception to this is Klee's measure problem in R^2, for which Chan [CGTA 2010] gave an unconditional {\Omega}(\sqrt{n}) lower bound on the worst-case update time. By a similar approach, we show that this also holds for an important special case of Klee's measure problem in R^3 known as the Hypervolume Indicator problem.

The noncentral Wishart distribution has become more mainstream in statistics as the prevalence of applications involving sample covariances with underlying multivariate Gaussian populations as dramatically increased since the advent of computers. Multiple sources in the literature deal with local approximations of the noncentral Wishart distribution with respect to its central counterpart. However, no source has yet developed explicit local approximations for the (central) Wishart distribution in terms of a normal analogue, which is important since Gaussian distributions are at the heart of the asymptotic theory for many statistical methods. In this paper, we prove a precise asymptotic expansion for the ratio of the Wishart density to the symmetric matrix-variate normal density with the same mean and covariances. The result is then used to derive an upper bound on the total variation between the corresponding probability measures and to find the pointwise variance of a new density estimator on the space of positive definite matrices with a Wishart asymmetric kernel. For the sake of completeness, we also find expressions for the pointwise bias of our new estimator, the pointwise variance as we move towards the boundary of its support, the mean squared error, the mean integrated squared error away from the boundary, and we prove its asymptotic normality.

We propose two Hybrid High-Order (HHO) methods for the incompressible Navier-Stokes equations and investigate their robustness with respect to the Reynolds number. While both methods rely on a HHO formulation of the viscous term, the pressure-velocity coupling is fundamentally different, up to the point that the two approaches can be considered antithetical. The first method is kinetic energy preserving, meaning that the skew-symmetric discretization of the convective term is guaranteed not to alter the kinetic energy balance. The approximated velocity fields exactly satisfy the divergence free constraint and continuity of the normal component of the velocity is weakly enforced on the mesh skeleton, leading to H-div conformity. The second scheme relies on Godunov fluxes for pressure-velocity coupling: a Harten, Lax and van Leer (HLL) approximated Riemann Solver designed for cell centered formulations is adapted to hybrid face centered formulations. The resulting numerical scheme is robust up to the inviscid limit, meaning that it can be applied for seeking approximate solutions of the incompressible Euler equations. The schemes are numerically validated performing steady and unsteady two dimensional test cases and evaluating the convergence rates on h-refined mesh sequences. In addition to standard benchmark flow problems, specifically conceived test cases are conducted for studying the error behaviour when approaching the inviscid limit.

We design a new algorithm for solving parametric systems having finitely many complex solutions for generic values of the parameters. More precisely, let $f = (f_1, \ldots, f_m)\subset \mathbb{Q}[y][x]$ with $y = (y_1, \ldots, y_t)$ and $x = (x_1, \ldots, x_n)$, $V\subset \mathbb{C}^{t+n}$ be the algebraic set defined by $f$ and $\pi$ be the projection $(y, x) \to y$. Under the assumptions that $f$ admits finitely many complex roots for generic values of $y$ and that the ideal generated by $f$ is radical, we solve the following problem. On input $f$, we compute semi-algebraic formulas defining semi-algebraic subsets $S_1, \ldots, S_l$ of the $y$-space such that $\cup_{i=1}^l S_i$ is dense in $\mathbb{R}^t$ and the number of real points in $V\cap \pi^{-1}(\eta)$ is invariant when $\eta$ varies over each $S_i$. This algorithm exploits properties of some well chosen monomial bases in the algebra $\mathbb{Q}(y)[x]/I$ where $I$ is the ideal generated by $f$ in $\mathbb{Q}(y)[x]$ and the specialization property of the so-called Hermite matrices. This allows us to obtain compact representations of the sets $S_i$ by means of semi-algebraic formulas encoding the signature of a symmetric matrix. When $f$ satisfies extra genericity assumptions, we derive complexity bounds on the number of arithmetic operations in $\mathbb{Q}$ and the degree of the output polynomials. Let $d$ be the maximal degree of the $f_i$'s and $D = n(d-1)d^n$, we prove that, on a generic $f=(f_1,\ldots,f_n)$, one can compute those semi-algebraic formulas with $O^~( \binom{t+D}{t}2^{3t}n^{2t+1} d^{3nt+2(n+t)+1})$ operations in $\mathbb{Q}$ and that the polynomials involved have degree bounded by $D$. We report on practical experiments which illustrate the efficiency of our algorithm on generic systems and systems from applications. It allows us to solve problems which are out of reach of the state-of-the-art.

This paper is concerned with geometric exponential energy-preserving integrators for solving charged-particle dynamics in a magnetic field from normal to strong regimes. We firstly formulate the scheme of the methods for the system in a uniform magnetic field by using the idea of continuous-stage methods, and then discuss its energy-preserving property. Moreover, symmetric conditions and order conditions are analysed. Based on those conditions, we propose two practical symmetric continuous-stage exponential energy-preserving integrators of order up to four. Then we extend the obtained methods to the system in a nonuniform magnetic field and derive their properties including the symmetry, convergence and energy conservation. Numerical experiments demonstrate the efficiency of the proposed methods in comparison with some existing schemes in the literature.

In this paper, we consider the time-inhomogeneous nonlinear time series regression for a general class of locally stationary time series. On one hand, we propose sieve nonparametric estimators for the time-varying regression functions which can achieve the min-max optimal rate. On the other hand, we develop a unified simultaneous inferential theory which can be used to conduct both structural and exact form testings on the functions. Our proposed statistics are powerful even under locally weak alternatives. We also propose a multiplier bootstrapping procedure for practical implementation. Our methodology and theory do not require any structural assumptions on the regression functions and we also allow the functions to be supported in an unbounded domain. We also establish sieve approximation theory for 2-D functions in unbounded domain and a Gaussian approximation result for affine and quadratic forms for high dimensional locally stationary time series, which can be of independent interest. Numerical simulations and a real financial data analysis are provided to support our results.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

北京阿比特科技有限公司