亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate the fundamental limits of MIMO-OFDM integrated sensing and communications (ISAC) systems based on a Bayesian Cram\'er-Rao bound (BCRB) analysis. We derive the BCRB for joint channel parameter estimation and data symbol detection, in which a performance trade-off between both functionalities is observed. We formulate the optimization problem for a linear precoder design and propose the stochastic Riemannian gradient descent (SRGD) approach to solve the non-convex problem. We analyze the optimality conditions and show that SRGD ensures convergence with high probability. The simulation results verify our analyses and also demonstrate a fast convergence speed. Finally, the performance trade-off is illustrated and investigated.

相關內容

In this paper, we present a new analytical 3D placement framework with a bistratal wirelength model for F2F-bonded 3D ICs with heterogeneous technology nodes based on the electrostatic-based density model. The proposed framework, enabled GPU-acceleration, is capable of efficiently determining node partitioning and locations simultaneously, leveraging the dedicated 3D wirelength model and density model. The experimental results on ICCAD 2022 contest benchmarks demonstrate that our proposed 3D placement framework can achieve up to 6.1% wirelength improvement and 4.1% on average compared to the first-place winner with much fewer vertical interconnections and up to 9.8x runtime speedup. Notably, the proposed framework also outperforms the state-of-the-art 3D analytical placer by up to 3.3% wirelength improvement and 2.1% on average with up to 8.8x acceleration on large cases using GPUs.

In this paper, we revisit the problem of sparse linear regression in the local differential privacy (LDP) model. Existing research in the non-interactive and sequentially local models has focused on obtaining the lower bounds for the case where the underlying parameter is $1$-sparse, and extending such bounds to the more general $k$-sparse case has proven to be challenging. Moreover, it is unclear whether efficient non-interactive LDP (NLDP) algorithms exist. To address these issues, we first consider the problem in the $\epsilon$ non-interactive LDP model and provide a lower bound of $\Omega(\frac{\sqrt{dk\log d}}{\sqrt{n}\epsilon})$ on the $\ell_2$-norm estimation error for sub-Gaussian data, where $n$ is the sample size and $d$ is the dimension of the space. We propose an innovative NLDP algorithm, the very first of its kind for the problem. As a remarkable outcome, this algorithm also yields a novel and highly efficient estimator as a valuable by-product. Our algorithm achieves an upper bound of $\tilde{O}({\frac{d\sqrt{k}}{\sqrt{n}\epsilon}})$ for the estimation error when the data is sub-Gaussian, which can be further improved by a factor of $O(\sqrt{d})$ if the server has additional public but unlabeled data. For the sequentially interactive LDP model, we show a similar lower bound of $\Omega({\frac{\sqrt{dk}}{\sqrt{n}\epsilon}})$. As for the upper bound, we rectify a previous method and show that it is possible to achieve a bound of $\tilde{O}(\frac{k\sqrt{d}}{\sqrt{n}\epsilon})$. Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.

In this paper, we consider the one-bit precoding problem for the multiuser downlink massive multiple-input multiple-output (MIMO) system with phase shift keying (PSK) modulation. We focus on the celebrated constructive interference (CI)-based problem formulation. We first establish the NP-hardness of the problem (even in the single-user case), which reveals the intrinsic difficulty of globally solving the problem. Then, we propose a novel negative $\ell_1$ penalty model for the considered problem, which penalizes the one-bit constraint into the objective by a negative $\ell_1$-norm term, and show the equivalence between (global and local) solutions of the original problem and the penalty problem when the penalty parameter is sufficiently large. We further transform the penalty model into an equivalent min-max problem and propose an efficient alternating proximal/projection gradient descent ascent (APGDA) algorithm for solving it, which performs a proximal gradient decent over one block of variables and a projection gradient ascent over the other block of variables alternately. The APGDA algorithm enjoys a low per-iteration complexity and is guaranteed to converge to a stationary point of the min-max problem and a local minimizer of the penalty problem. To further reduce the computational cost, we also propose a low-complexity implementation of the APGDA algorithm, where the values of the variables will be fixed in later iterations once they satisfy the one-bit constraint. Numerical results show that, compared to the state-of-the-art CI-based algorithms, both of the proposed algorithms generally achieve better bit-error-rate (BER) performance with lower computational cost.

In this paper, we identify and characterize the emerging area of representation engineering (RepE), an approach to enhancing the transparency of AI systems that draws on insights from cognitive neuroscience. RepE places population-level representations, rather than neurons or circuits, at the center of analysis, equipping us with novel methods for monitoring and manipulating high-level cognitive phenomena in deep neural networks (DNNs). We provide baselines and an initial analysis of RepE techniques, showing that they offer simple yet effective solutions for improving our understanding and control of large language models. We showcase how these methods can provide traction on a wide range of safety-relevant problems, including honesty, harmlessness, power-seeking, and more, demonstrating the promise of top-down transparency research. We hope that this work catalyzes further exploration of RepE and fosters advancements in the transparency and safety of AI systems.

In this paper, we conduct a comprehensive study of In-Context Learning (ICL) by addressing several open questions: (a) What type of ICL estimator is learned by large language models? (b) What is a proper performance metric for ICL and what is the error rate? (c) How does the transformer architecture enable ICL? To answer these questions, we adopt a Bayesian view and formulate ICL as a problem of predicting the response corresponding to the current covariate, given a number of examples drawn from a latent variable model. To answer (a), we show that, without updating the neural network parameters, ICL implicitly implements the Bayesian model averaging algorithm, which is proven to be approximately parameterized by the attention mechanism. For (b), we analyze the ICL performance from an online learning perspective and establish a $\mathcal{O}(1/T)$ regret bound for perfectly pretrained ICL, where $T$ is the number of examples in the prompt. To answer (c), we show that, in addition to encoding Bayesian model averaging via attention, the transformer architecture also enables a fine-grained statistical analysis of pretraining under realistic assumptions. In particular, we prove that the error of pretrained model is bounded by a sum of an approximation error and a generalization error, where the former decays to zero exponentially as the depth grows, and the latter decays to zero sublinearly with the number of tokens in the pretraining dataset. Our results provide a unified understanding of the transformer and its ICL ability with bounds on ICL regret, approximation, and generalization, which deepens our knowledge of these essential aspects of modern language models.

In this paper, we propose a secure short-packet communication (SPC) system involving an unmanned aerial vehicle (UAV)-aided relay in the presence of a terrestrial passive eavesdropper. The considered system, which is applicable to various next-generation Internet-of-Things (IoT) networks, exploits a UAV as a mobile relay, facilitating the reliable and secure exchange of intermittent short packets between a pair of remote IoT devices with strict latency. Our objective is to improve the overall secrecy throughput performance of the system by carefully designing key parameters such as the coding blocklengths and the UAV trajectory. However, this inherently poses a challenging optimization problem that is difficult to solve optimally. To address the issue, we propose a low-complexity algorithm inspired by the block successive convex approximation approach, where we divide the original problem into two subproblems and solve them alternately until convergence. Numerical results demonstrate that the proposed design achieves significant performance improvements relative to other benchmarks, and offer valuable insights into determining appropriate coding blocklengths and UAV trajectory.

In this paper, we investigate a practical structure of reconfigurable intelligent surface (RIS)-based double spatial scattering modulation (DSSM) for millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. A suboptimal detector is proposed, in which the beam direction is first demodulated according to the received beam strength, and then the remaining information is demodulated by adopting the maximum likelihood algorithm. Based on the proposed suboptimal detector, we derive the conditional pairwise error probability expression. Further, the exact numerical integral and closed-form expressions of unconditional pairwise error probability (UPEP) are derived via two different approaches. To provide more insights, we derive the upper bound and asymptotic expressions of UPEP. In addition, the diversity gain of the RIS-DSSM scheme was also given. Furthermore, the union upper bound of average bit error probability (ABEP) is obtained by combining the UPEP and the number of error bits. Simulation results are provided to validate the derived upper bound and asymptotic expressions of ABEP. We found an interesting phenomenon that the ABEP performance of the proposed system-based phase shift keying is better than that of the quadrature amplitude modulation. Additionally, the performance advantage of ABEP is more significant with the increase in the number of RIS elements.

Here, we test the performance and scalability of fully-asynchronous, best-effort communication on existing, commercially-available HPC hardware. A first set of experiments tested whether best-effort communication strategies can benefit performance compared to the traditional perfect communication model. At high CPU counts, best-effort communication improved both the number of computational steps executed per unit time and the solution quality achieved within a fixed-duration run window. Under the best-effort model, characterizing the distribution of quality of service across processing components and over time is critical to understanding the actual computation being performed. Additionally, a complete picture of scalability under the best-effort model requires analysis of how such quality of service fares at scale. To answer these questions, we designed and measured a suite of quality of service metrics: simulation update period, message latency, message delivery failure rate, and message delivery coagulation. Under a lower communication-intensivity benchmark parameterization, we found that median values for all quality of service metrics were stable when scaling from 64 to 256 process. Under maximal communication intensivity, we found only minor -- and, in most cases, nil -- degradation in median quality of service. In an additional set of experiments, we tested the effect of an apparently faulty compute node on performance and quality of service. Despite extreme quality of service degradation among that node and its clique, median performance and quality of service remained stable.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

北京阿比特科技有限公司