亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In a connected world, spare CPU cycles are up for grabs, if you only make its obtention easy enough. In this paper we present a distributed evolutionary computation system that uses the computational capabilities of the ubiquituous web browser. Using Asynchronous Javascript and JSON (Javascript Object Notation, a serialization protocol) allows anybody with a web browser (that is, mostly everybody connected to the Internet) to participate in a genetic algorithm experiment with little effort, or none at all. Since, in this case, computing becomes a social activity and is inherently impredictable, in this paper we will explore the performance of this kind of virtual computer by solving simple problems such as the Royal Road function and analyzing how many machines and evaluations it yields. We will also examine possible performance bottlenecks and how to solve them, and, finally, issue some advice on how to set up this kind of experiments to maximize turnout and, thus, performance.

相關內容

JSON( Java Script Object Notation)是一種輕量級的資料交換語言,以文字為基礎,且易于讓人閱讀。盡管 JSON 是在 JavaScript 的一個子集,但 JSON 是獨立于語言的文本格式,並且采用了類似于 C 語言家族的一些習慣。

Over the last 30 years, the World Wide Web has changed significantly. In this paper, we argue that common practices to prepare web pages for delivery conflict with many efforts to present content with minimal latency, one fundamental goal that pushed changes in the WWW. To bolster our arguments, we revisit reasons that led to changes of HTTP and compare them systematically with techniques to prepare web pages. We found that the structure of many web pages leverages features of HTTP/1.1 but hinders the use of recent HTTP features to present content quickly. To improve the situation in the future, we propose fine-grained content segmentation. This would allow to exploit streaming capabilities of recent HTTP versions and to render content as quickly as possible without changing underlying protocols or web browsers.

In this paper, we propose a novel learning scheme called epoch-evolving Gaussian Process Guided Learning (GPGL), which aims at characterizing the correlation information between the batch-level distribution and the global data distribution. Such correlation information is encoded as context labels and needs renewal every epoch. With the guidance of the context label and ground truth label, GPGL scheme provides a more efficient optimization through updating the model parameters with a triangle consistency loss. Furthermore, our GPGL scheme can be further generalized and naturally applied to the current deep models, outperforming the existing batch-based state-of-the-art models on mainstream datasets (CIFAR-10, CIFAR-100, and Tiny-ImageNet) remarkably.

In this paper, we tackle the problem of Egocentric Human-Object Interaction (EHOI) detection in an industrial setting. To overcome the lack of public datasets in this context, we propose a pipeline and a tool for generating synthetic images of EHOIs paired with several annotations and data signals (e.g., depth maps or segmentation masks). Using the proposed pipeline, we present EgoISM-HOI a new multimodal dataset composed of synthetic EHOI images in an industrial environment with rich annotations of hands and objects. To demonstrate the utility and effectiveness of synthetic EHOI data produced by the proposed tool, we designed a new method that predicts and combines different multimodal signals to detect EHOIs in RGB images. Our study shows that exploiting synthetic data to pre-train the proposed method significantly improves performance when tested on real-world data. Moreover, to fully understand the usefulness of our method, we conducted an in-depth analysis in which we compared and highlighted the superiority of the proposed approach over different state-of-the-art class-agnostic methods. To support research in this field, we publicly release the datasets, source code, and pre-trained models at //iplab.dmi.unict.it/egoism-hoi.

In this paper, we investigate the millimeter-wave (mmWave) near-field beam training problem to find the correct beam direction. In order to address the high complexity and low identification accuracy of existing beam training techniques, we propose an efficient hashing multi-arm beam (HMB) training scheme for the near-field scenario. Specifically, we first design a set of sparse bases based on the polar domain sparsity of the near-field channel. Then, the random hash functions are chosen to construct the near-field multi-arm beam training codebook. Each multi-arm beam codeword is scanned in a time slot until all the predefined codewords are traversed. Finally, the soft decision and voting methods are applied to distinguish the signal from different base stations and obtain correctly aligned beams. Simulation results show that our proposed near-field HMB training method can reduce the beam training overhead to the logarithmic level, and achieve 96.4% identification accuracy of exhaustive beam training. Moreover, we also verify applicability under the far-field scenario.

In this paper, we propose a novel model named DemiNet (short for DEpendency-Aware Multi-Interest Network) to address the above two issues. To be specific, we first consider various dependency types between item nodes and perform dependency-aware heterogeneous attention for denoising and obtaining accurate sequence item representations. Secondly, for multiple interests extraction, multi-head attention is conducted on top of the graph embedding. To filter out noisy inter-item correlations and enhance the robustness of extracted interests, self-supervised interest learning is introduced to the above two steps. Thirdly, to aggregate the multiple interests, interest experts corresponding to different interest routes give rating scores respectively, while a specialized network assigns the confidence of each score. Experimental results on three real-world datasets demonstrate that the proposed DemiNet significantly improves the overall recommendation performance over several state-of-the-art baselines. Further studies verify the efficacy and interpretability benefits brought by the fine-grained user interest modeling.

In this paper, we propose a non-parallel any-to-many voice conversion (VC) method termed VoiceGrad. Inspired by WaveGrad, a recently introduced novel waveform generation method, VoiceGrad is based upon the concepts of score matching and Langevin dynamics. It uses weighted denoising score matching to train a score approximator, a fully convolutional network with a U-Net structure designed to predict the gradient of the log density of the speech feature sequences of multiple speakers, and performs VC by using annealed Langevin dynamics to iteratively update an input feature sequence towards the nearest stationary point of the target distribution based on the trained score approximator network. Thanks to the nature of this concept, VoiceGrad enables any-to-many VC, a VC scenario in which the speaker of input speech can be arbitrary, and allows for non-parallel training, which requires no parallel utterances or transcriptions.

In this paper, we introduce the Fongbe to French Speech Translation Corpus (FFSTC) for the first time. This corpus encompasses approximately 31 hours of collected Fongbe language content, featuring both French transcriptions and corresponding Fongbe voice recordings. FFSTC represents a comprehensive dataset compiled through various collection methods and the efforts of dedicated individuals. Furthermore, we conduct baseline experiments using Fairseq's transformer_s and conformer models to evaluate data quality and validity. Our results indicate a score of 8.96 for the transformer_s model and 8.14 for the conformer model, establishing a baseline for the FFSTC corpus.

In this paper, we study the cooperative Multi-Agent Reinforcement Learning (MARL) problems using Reward Machines (RMs) to specify the reward functions such that the prior knowledge of high-level events in a task can be leveraged to facilitate the learning efficiency. Unlike the existing work that RMs have been incorporated into MARL for task decomposition and policy learning in relatively simple domains or with an assumption of independencies among the agents, we present Multi-Agent Reinforcement Learning with a Hierarchy of RMs (MAHRM) that is capable of dealing with more complex scenarios when the events among agents can occur concurrently and the agents are highly interdependent. MAHRM exploits the relationship of high-level events to decompose a task into a hierarchy of simpler subtasks that are assigned to a small group of agents, so as to reduce the overall computational complexity. Experimental results in three cooperative MARL domains show that MAHRM outperforms other MARL methods using the same prior knowledge of high-level events.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper we investigate the role of the dependency tree in a named entity recognizer upon using a set of GCN. We perform a comparison among different NER architectures and show that the grammar of a sentence positively influences the results. Experiments on the ontonotes dataset demonstrate consistent performance improvements, without requiring heavy feature engineering nor additional language-specific knowledge.

北京阿比特科技有限公司