亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increased deployment of LMs for real-world tasks involving knowledge and facts makes it important to understand model epistemology: what LMs think they know, and how their attitudes toward that knowledge are affected by language use in their inputs. Here, we study an aspect of model epistemology: how epistemic markers of certainty, uncertainty, or evidentiality like "I'm sure it's", "I think it's", or "Wikipedia says it's" affect models, and whether they contribute to model failures. We develop a typology of epistemic markers and inject 50 markers into prompts for question answering. We find that LMs are highly sensitive to epistemic markers in prompts, with accuracies varying more than 80%. Surprisingly, we find that expressions of high certainty result in a 7% decrease in accuracy as compared to low certainty expressions; similarly, factive verbs hurt performance, while evidentials benefit performance. Our analysis of a popular pretraining dataset shows that these markers of uncertainty are associated with answers on question-answering websites, while markers of certainty are associated with questions. These associations may suggest that the behavior of LMs is based on mimicking observed language use, rather than truly reflecting epistemic uncertainty.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Microsoft Surface · Extensibility · ForCES · INFORMS ·
2024 年 1 月 3 日

The growing demand for natural interactions with technology underscores the importance of achieving realistic touch sensations in digital environments. Realizing this goal highly depends on comprehensive databases of finger-surface interactions, which need further development. Here, we present SENS3, an extensive open-access repository of multisensory data acquired from fifty surfaces when two participants explored them with their fingertips through static contact, pressing, tapping, and sliding. SENS3 encompasses high-fidelity visual, audio, and haptic information recorded during these interactions, including videos, sounds, contact forces, torques, positions, accelerations, skin temperature, heat flux, and surface photographs. Additionally, it incorporates thirteen participants' psychophysical sensation ratings while exploring these surfaces freely. We anticipate that SENS3 will be valuable for advancing multisensory texture rendering, user experience development, and touch sensing in robotics.

This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the Intensive Care Unit (ICU) length of stay (LOS). Highlighting the critical role of the ICU in managing critically ill patients, the study addresses the growing strain on ICU capacity. It emphasizes the significance of LOS prediction for resource allocation. The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction. While the XGBoost model performs well overall, disparities across race and insurance attributes reflect the need for tailored assessments and continuous monitoring. The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.

Traffic from distributed training of machine learning (ML) models makes up a large and growing fraction of the traffic mix in enterprise data centers. While work on distributed ML abounds, the network traffic generated by distributed ML has received little attention. Using measurements on a testbed network, we investigate the traffic characteristics generated by the training of the ResNet-50 neural network with an emphasis on studying its short-term burstiness. For the latter we propose metrics that quantify traffic burstiness at different time scales. Our analysis reveals that distributed ML traffic exhibits a very high degree of burstiness on short time scales, exceeding a 60:1 peak-to-mean ratio on time intervals as long as 5~ms. We observe that training software orchestrates transmissions in such a way that burst transmissions from different sources within the same application do not result in congestion and packet losses. An extrapolation of the measurement data to multiple applications underscores the challenges of distributed ML traffic for congestion and flow control algorithms.

Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.

Multi-agent collaboration with Large Language Models (LLMs) demonstrates proficiency in basic tasks, yet its efficiency in more complex scenarios remains unexplored. In gaming environments, these agents often face situations without established coordination protocols, requiring them to make intelligent inferences about teammates from limited data. This problem motivates the area of ad hoc teamwork, in which an agent may potentially cooperate with a variety of teammates to achieve a shared goal. Our study focuses on the ad hoc teamwork problem where the agent operates in an environment driven by natural language. Our findings reveal the potential of LLM agents in team collaboration, highlighting issues related to hallucinations in communication. To address this issue, we develop CodeAct, a general agent that equips LLM with enhanced memory and code-driven reasoning, enabling the repurposing of partial information for rapid adaptation to new teammates.

Large language models (LLMs) are able to engage in natural-sounding conversations with humans, showcasing unprecedented capabilities for information retrieval and automated decision support. They have disrupted human-technology interaction and the way businesses operate. However, technologies based on generative artificial intelligence (GenAI) are known to hallucinate, misinform, and display biases introduced by the massive datasets on which they are trained. Existing research indicates that humans may unconsciously internalize these biases, which can persist even after they stop using the programs. This study explores the cultural self-perception of LLMs by prompting ChatGPT (OpenAI) and Bard (Google) with value questions derived from the GLOBE project. The findings reveal that their cultural self-perception is most closely aligned with the values of English-speaking countries and countries characterized by sustained economic competitiveness. Recognizing the cultural biases of LLMs and understanding how they work is crucial for all members of society because one does not want the black box of artificial intelligence to perpetuate bias in humans, who might, in turn, inadvertently create and train even more biased algorithms.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding. Although diffusion models have achieved impressive quality and diversity of sample synthesis than other state-of-the-art models, they still suffer from costly sampling procedure and sub-optimal likelihood estimation. Recent studies have shown great enthusiasm on improving the performance of diffusion model. In this article, we present a first comprehensive review of existing variants of the diffusion models. Specifically, we provide a first taxonomy of diffusion models and categorize them variants to three types, namely sampling-acceleration enhancement, likelihood-maximization enhancement and data-generalization enhancement. We also introduce in detail other five generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models), and clarify the connections between diffusion models and these generative models. Then we make a thorough investigation into the applications of diffusion models, including computer vision, natural language processing, waveform signal processing, multi-modal modeling, molecular graph generation, time series modeling, and adversarial purification. Furthermore, we propose new perspectives pertaining to the development of this generative model.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司