亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We model a system of n asymmetric firms selling a homogeneous good in a common market through a pay-as-bid auction. Every producer chooses as its strategy a supply function returning the quantity S(p) that it is willing to sell at a minimum unit price p. The market clears at the price at which the aggregate demand intersects the total supply and firms are paid the bid prices. We study a game theoretic model of competition among such firms and focus on its equilibria (Supply function equilibrium). The game we consider is a generalization of both models where firms can either set a fixed quantity (Cournot model) or set a fixed price (Bertrand model). Our main result is to prove existence and provide a characterization of (pure strategy) Nash equilibria in the space of K-Lipschitz supply functions.

相關內容

In multi-objective optimization, a single decision vector must balance the trade-offs between many objectives. Solutions achieving an optimal trade-off are said to be Pareto optimal: these are decision vectors for which improving any one objective must come at a cost to another. But as the set of Pareto optimal vectors can be very large, we further consider a more practically significant Pareto-constrained optimization problem, where the goal is to optimize a preference function constrained to the Pareto set. We investigate local methods for solving this constrained optimization problem, which poses significant challenges because the constraint set is (i) implicitly defined, and (ii) generally non-convex and non-smooth, even when the objectives are. We define notions of optimality and stationarity, and provide an algorithm with a last-iterate convergence rate of $O(K^{-1/2})$ to stationarity when the objectives are strongly convex and Lipschitz smooth.

Multi-modality image fusion and segmentation play a vital role in autonomous driving and robotic operation. Early efforts focus on boosting the performance for only one task, \emph{e.g.,} fusion or segmentation, making it hard to reach~`Best of Both Worlds'. To overcome this issue, in this paper, we propose a \textbf{M}ulti-\textbf{i}nteractive \textbf{F}eature learning architecture for image fusion and \textbf{Seg}mentation, namely SegMiF, and exploit dual-task correlation to promote the performance of both tasks. The SegMiF is of a cascade structure, containing a fusion sub-network and a commonly used segmentation sub-network. By slickly bridging intermediate features between two components, the knowledge learned from the segmentation task can effectively assist the fusion task. Also, the benefited fusion network supports the segmentation one to perform more pretentiously. Besides, a hierarchical interactive attention block is established to ensure fine-grained mapping of all the vital information between two tasks, so that the modality/semantic features can be fully mutual-interactive. In addition, a dynamic weight factor is introduced to automatically adjust the corresponding weights of each task, which can balance the interactive feature correspondence and break through the limitation of laborious tuning. Furthermore, we construct a smart multi-wave binocular imaging system and collect a full-time multi-modality benchmark with 15 annotated pixel-level categories for image fusion and segmentation. Extensive experiments on several public datasets and our benchmark demonstrate that the proposed method outputs visually appealing fused images and perform averagely $7.66\%$ higher segmentation mIoU in the real-world scene than the state-of-the-art approaches. The source code and benchmark are available at \url{//github.com/JinyuanLiu-CV/SegMiF}.

This paper focuses on investigating the learning operators for identifying weak solutions to the Navier-Stokes equations. Our objective is to establish a connection between the initial data as input and the weak solution as output. To achieve this, we employ a combination of deep learning methods and compactness argument to derive learning operators for weak solutions for any large initial data in 2D, and for low-dimensional initial data in 3D. Additionally, we utilize the universal approximation theorem to derive a lower bound on the number of sensors required to achieve accurate identification of weak solutions to the Navier-Stokes equations. Our results demonstrate the potential of using deep learning techniques to address challenges in the study of fluid mechanics, particularly in identifying weak solutions to the Navier-Stokes equations.

We investigate error of the Euler scheme in the case when the right-hand side function of the underlying ODE satisfies nonstandard assumptions such as local one-sided Lipschitz condition and local H\"older continuity. Moreover, we assume two cases in regards to information availability: exact and noisy with respect to the right-hand side function. Optimality analysis of the Euler scheme is also provided. Finally, we present the results of some numerical experiments.

We study the numerical solution of a Cahn-Hilliard/Allen-Cahn system with strong coupling through state and gradient dependent non-diagonal mobility matrices. A fully discrete approximation scheme in space and time is proposed which preserves the underlying gradient flow structure and leads to dissipation of the free-energy on the discrete level. Existence and uniqueness of the discrete solution is established and relative energy estimates are used to prove optimal convergence rates in space and time under minimal smoothness assumptions. Numerical tests are presented for illustration of the theoretical results and to demonstrate the viability of the proposed methods.

We consider the degree-Rips construction from topological data analysis, which provides a density-sensitive, multiparameter hierarchical clustering algorithm. We analyze its stability to perturbations of the input data using the correspondence-interleaving distance, a metric for hierarchical clusterings that we introduce. Taking certain one-parameter slices of degree-Rips recovers well-known methods for density-based clustering, but we show that these methods are unstable. However, we prove that degree-Rips, as a multiparameter object, is stable, and we propose an alternative approach for taking slices of degree-Rips, which yields a one-parameter hierarchical clustering algorithm with better stability properties. We prove that this algorithm is consistent, using the correspondence-interleaving distance. We provide an algorithm for extracting a single clustering from one-parameter hierarchical clusterings, which is stable with respect to the correspondence-interleaving distance. And, we integrate these methods into a pipeline for density-based clustering, which we call Persistable. Adapting tools from multiparameter persistent homology, we propose visualization tools that guide the selection of all parameters of the pipeline. We demonstrate Persistable on benchmark datasets, showing that it identifies multi-scale cluster structure in data.

Motivated by different characterizations of planar graphs and the 4-Color Theorem, several structural results concerning graphs of high chromatic number have been obtained. Toward strengthening some of these results, we consider the \emph{balanced chromatic number}, $\chi_b(\hat{G})$, of a signed graph $\hat{G}$. This is the minimum number of parts into which the vertices of a signed graph can be partitioned so that none of the parts induces a negative cycle. This extends the notion of the chromatic number of a graph since $\chi(G)=\chi_b(\tilde{G})$, where $\tilde{G}$ denotes the signed graph obtained from~$G$ by replacing each edge with a pair of (parallel) positive and negative edges. We introduce a signed version of Hadwiger's conjecture as follows. Conjecture: If a signed graph $\hat{G}$ has no negative loop and no $\tilde{K_t}$-minor, then its balanced chromatic number is at most $t-1$. We prove that this conjecture is, in fact, equivalent to Hadwiger's conjecture and show its relation to the Odd Hadwiger Conjecture. Motivated by these results, we also consider the relation between subdivisions and balanced chromatic number. We prove that if $(G, \sigma)$ has no negative loop and no $\tilde{K_t}$-subdivision, then it admits a balanced $\frac{79}{2}t^2$-coloring. This qualitatively generalizes a result of Kawarabayashi (2013) on totally odd subdivisions.

We examine the last-iterate convergence rate of Bregman proximal methods - from mirror descent to mirror-prox and its optimistic variants - as a function of the local geometry induced by the prox-mapping defining the method. For generality, we focus on local solutions of constrained, non-monotone variational inequalities, and we show that the convergence rate of a given method depends sharply on its associated Legendre exponent, a notion that measures the growth rate of the underlying Bregman function (Euclidean, entropic, or other) near a solution. In particular, we show that boundary solutions exhibit a stark separation of regimes between methods with a zero and non-zero Legendre exponent: the former converge at a linear rate, while the latter converge, in general, sublinearly. This dichotomy becomes even more pronounced in linearly constrained problems where methods with entropic regularization achieve a linear convergence rate along sharp directions, compared to convergence in a finite number of steps under Euclidean regularization.

Nonlinear extensions to the active subspaces method have brought remarkable results for dimension reduction in the parameter space and response surface design. We further develop a kernel-based nonlinear method. In particular we introduce it in a broader mathematical framework that contemplates also the reduction in parameter space of multivariate objective functions. The implementation is thoroughly discussed and tested on more challenging benchmarks than the ones already present in the literature, for which dimension reduction with active subspaces produces already good results. Finally, we show a whole pipeline for the design of response surfaces with the new methodology in the context of a parametric CFD application solved with the Discontinuous Galerkin method.

This article is about finding the limit set for banded Toeplitz matrices. Our main result is a new approach to approximate the limit set $\Lambda(b)$ where $b$ is the symbol of the banded Toeplitz matrix. The new approach is geometrical and based on the formula $\Lambda(b) = \cap_{\rho \in (0, \infty)} \text{sp } T(b_\rho)$. We show that the full intersection can be approximated by the intersection for a finite number of $\rho$'s, and that the intersection of polygon approximations for $\text{sp } T(b_\rho)$ yields an approximating polygon for $\Lambda(b)$ that converges to $\Lambda(b)$ in the Hausdorff metric. Further, we show that one can slightly expand the polygon approximations for $\text{sp } T(b_\rho)$ to ensure that they contain $\text{sp } T(b_\rho)$. Then, taking the intersection yields an approximating superset of $\Lambda(b)$ which converges to $\Lambda(b)$ in the Hausdorff metric, and is guaranteed to contain $\Lambda(b)$. We implement the algorithm in Python and test it. It performs on par to and better in some cases than existing algorithms. We argue, but do not prove, that the average time complexity of the algorithm is $O(n^2 + mn\log m)$, where $n$ is the number of $\rho$'s and $m$ is the number of vertices for the polygons approximating $\text{sp } T(b_\rho)$. Further, we argue that the distance from $\Lambda(b)$ to both the approximating polygon and the approximating superset decreases as $O(1/\sqrt{k})$ for most of $\Lambda(b)$, where $k$ is the number of elementary operations required by the algorithm.

北京阿比特科技有限公司