Detecting out-of-domain (OOD) intents from user queries is essential for a task-oriented dialogue system. Previous OOD detection studies generally work on the assumption that plenty of labeled IND intents exist. In this paper, we focus on a more practical few-shot OOD setting where there are only a few labeled IND data and massive unlabeled mixed data that may belong to IND or OOD. The new scenario carries two key challenges: learning discriminative representations using limited IND data and leveraging unlabeled mixed data. Therefore, we propose an adaptive prototypical pseudo-labeling (APP) method for few-shot OOD detection, including a prototypical OOD detection framework (ProtoOOD) to facilitate low-resource OOD detection using limited IND data, and an adaptive pseudo-labeling method to produce high-quality pseudo OOD\&IND labels. Extensive experiments and analysis demonstrate the effectiveness of our method for few-shot OOD detection.
In large-scale datacenters, memory failure is a common cause of server crashes, with uncorrectable errors (UEs) being a major indicator of Dual Inline Memory Module (DIMM) defects. Existing approaches primarily focus on predicting UEs using correctable errors (CEs), without fully considering the information provided by error bits. However, error bit patterns have a strong correlation with the occurrence of uncorrectable errors (UEs). In this paper, we present a comprehensive study on the correlation between CEs and UEs, specifically emphasizing the importance of spatio-temporal error bit information. Our analysis reveals a strong correlation between spatio-temporal error bits and UE occurrence. Through evaluations using real-world datasets, we demonstrate that our approach significantly improves prediction performance by 15% in F1-score compared to the state-of-the-art algorithms. Overall, our approach effectively reduces the number of virtual machine interruptions caused by UEs by approximately 59%.
Articulated 3D reconstruction has valuable applications in various domains, yet it remains costly and demands intensive work from domain experts. Recent advancements in template-free learning methods show promising results with monocular videos. Nevertheless, these approaches necessitate a comprehensive coverage of all viewpoints of the subject in the input video, thus limiting their applicability to casually captured videos from online sources. In this work, we study articulated 3D shape reconstruction from a single and casually captured internet video, where the subject's view coverage is incomplete. We propose DreaMo that jointly performs shape reconstruction while solving the challenging low-coverage regions with view-conditioned diffusion prior and several tailored regularizations. In addition, we introduce a skeleton generation strategy to create human-interpretable skeletons from the learned neural bones and skinning weights. We conduct our study on a self-collected internet video collection characterized by incomplete view coverage. DreaMo shows promising quality in novel-view rendering, detailed articulated shape reconstruction, and skeleton generation. Extensive qualitative and quantitative studies validate the efficacy of each proposed component, and show existing methods are unable to solve correct geometry due to the incomplete view coverage.
With the increasing popularity of Internet of Things (IoT) devices, securing sensitive user data has emerged as a major challenge. These devices often collect confidential information, such as audio and visual data, through peripheral inputs like microphones and cameras. Such sensitive information is then exposed to potential threats, either from malicious software with high-level access rights or transmitted (sometimes inadvertently) to untrusted cloud services. In this paper, we propose a generic design to enhance the privacy in IoT-based systems by isolating peripheral I/O memory regions in a secure kernel space of a trusted execution environment (TEE). Only a minimal set of peripheral driver code, resident within the secure kernel, can access this protected memory area. This design effectively restricts any unauthorised access by system software, including the operating system and hypervisor. The sensitive peripheral data is then securely transferred to a user-space TEE, where obfuscation mechanisms can be applied before it is relayed to third parties, e.g., the cloud. To validate our architectural approach, we provide a proof-of-concept implementation of our design by securing an audio peripheral based on inter-IC sound (I2S), a serial bus to interconnect audio devices. The experimental results show that our design offers a robust security solution with an acceptable computational overhead.
Deploying unmanned aerial vehicle (UAV) networks to provide coverage for outdoor users has attracted great attention during the last decade. However, outdoor coverage is challenging due to the high mobility of crowds and the diverse terrain configurations causing building blockage. Most studies use stochastic channel models to characterize the impact of building blockage on user performance and do not take into account terrain information. On the other hand, real-time search methods use terrain information, but they are only practical when a single UAV serves a single user.In this paper, we put forward two methods to avoid building blockage in a multi-user system by collecting prior terrain information and using real-time search.We proposed four algorithms related to the combinations of the above methods and their performances are evaluated and compared in different scenarios.By adjusting the height of the UAV based on terrain information collected before networking, the performance is significantly enhanced compared to the one when no terrain information is available.The algorithm based on real-time search further improves the coverage performance by avoiding the shadow of buildings. During the execution of the real-time search algorithm, the search distance is reduced using the collected terrain information.
Cross-domain Sequential Recommendation (CSR) which leverages user sequence data from multiple domains has received extensive attention in recent years. However, the existing CSR methods require sharing origin user data across domains, which violates the General Data Protection Regulation (GDPR). Thus, it is necessary to combine federated learning (FL) and CSR to fully utilize knowledge from different domains while preserving data privacy. Nonetheless, the sequence feature heterogeneity across different domains significantly impacts the overall performance of FL. In this paper, we propose FedDCSR, a novel federated cross-domain sequential recommendation framework via disentangled representation learning. Specifically, to address the sequence feature heterogeneity across domains, we introduce an approach called inter-intra domain sequence representation disentanglement (SRD) to disentangle the user sequence features into domain-shared and domain-exclusive features. In addition, we design an intra domain contrastive infomax (CIM) strategy to learn richer domain-exclusive features of users by performing data augmentation on user sequences. Extensive experiments on three real-world scenarios demonstrate that FedDCSR achieves significant improvements over existing baselines.
Detecting malicious URLs is a crucial aspect of web search and mining, significantly impacting internet security. Though advancements in machine learning have improved the effectiveness of detection methods, these methods still face significant challenges in their capacity to generalize and their resilience against evolving threats. In this paper, we propose PyraTrans, an approach that combines the strengths of pretrained Transformers and pyramid feature learning for improving malicious URL detection. We implement PyraTrans by leveraging a pretrained CharBERT as the base and augmenting it with 3 connected feature modules: 1) The Encoder Feature Extraction module, which extracts representations from each encoder layer of CharBERT to obtain multi-order features; 2) The Multi-Scale Feature Learning Module, which captures multi-scale local contextual insights and aggregate information across different layer-levels; and 3) The Pyramid Spatial Attention Module, which learns hierarchical and spatial feature attentions, highlighting critical classification signals while reducing noise. The proposed approach addresses the limitations of the Transformer in local feature learning and spatial awareness, and enabling us to extract multi-order, multi-scale URL feature representations with enhanced attentional focus. PyraTrans is evaluated using 4 benchmark datasets, where it demonstrated significant advancements over prior baseline methods. Particularly, on the imbalanced dataset, our method, with just 10% of the data for training, the TPR is 3.3-6.5 times and the F1-score is 2.9-4.5 times that of the baseline. Our approach also demonstrates robustness against adversarial attacks. Codes and data are available at //github.com/Alixyvtte/PyraTrans.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Sequential recommendation (SR) is to accurately recommend a list of items for a user based on her current accessed ones. While new-coming users continuously arrive in the real world, one crucial task is to have inductive SR that can produce embeddings of users and items without re-training. Given user-item interactions can be extremely sparse, another critical task is to have transferable SR that can transfer the knowledge derived from one domain with rich data to another domain. In this work, we aim to present the holistic SR that simultaneously accommodates conventional, inductive, and transferable settings. We propose a novel deep learning-based model, Relational Temporal Attentive Graph Neural Networks (RetaGNN), for holistic SR. The main idea of RetaGNN is three-fold. First, to have inductive and transferable capabilities, we train a relational attentive GNN on the local subgraph extracted from a user-item pair, in which the learnable weight matrices are on various relations among users, items, and attributes, rather than nodes or edges. Second, long-term and short-term temporal patterns of user preferences are encoded by a proposed sequential self-attention mechanism. Third, a relation-aware regularization term is devised for better training of RetaGNN. Experiments conducted on MovieLens, Instagram, and Book-Crossing datasets exhibit that RetaGNN can outperform state-of-the-art methods under conventional, inductive, and transferable settings. The derived attention weights also bring model explainability.
Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. This neglects the privacy-preserving policy, that is, all the data and computations must be kept decentralized. There exists three problems in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from source and target domains, which is not accessible. (2) The communication cost and privacy security limit the application of UMDA methods (e.g., the domain adversarial training). (3) Since users have no authority to check the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. In this study, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. KD3A solves the above problems with three components: (1) A multi-source knowledge distillation method named Knowledge Vote to learn high-quality domain consensus knowledge. (2) A dynamic weighting strategy named Consensus Focus to identify both the malicious and irrelevant domains. (3) A decentralized optimization strategy for domain distance named BatchNorm MMD. The extensive experiments on DomainNet demonstrate that KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods. Moreover, our KD3A significantly outperforms state-of-the-art UMDA approaches.
Multi-paragraph reasoning is indispensable for open-domain question answering (OpenQA), which receives less attention in the current OpenQA systems. In this work, we propose a knowledge-enhanced graph neural network (KGNN), which performs reasoning over multiple paragraphs with entities. To explicitly capture the entities' relatedness, KGNN utilizes relational facts in knowledge graph to build the entity graph. The experimental results show that KGNN outperforms in both distractor and full wiki settings than baselines methods on HotpotQA dataset. And our further analysis illustrates KGNN is effective and robust with more retrieved paragraphs.