Detecting malicious URLs is a crucial aspect of web search and mining, significantly impacting internet security. Though advancements in machine learning have improved the effectiveness of detection methods, these methods still face significant challenges in their capacity to generalize and their resilience against evolving threats. In this paper, we propose PyraTrans, an approach that combines the strengths of pretrained Transformers and pyramid feature learning for improving malicious URL detection. We implement PyraTrans by leveraging a pretrained CharBERT as the base and augmenting it with 3 connected feature modules: 1) The Encoder Feature Extraction module, which extracts representations from each encoder layer of CharBERT to obtain multi-order features; 2) The Multi-Scale Feature Learning Module, which captures multi-scale local contextual insights and aggregate information across different layer-levels; and 3) The Pyramid Spatial Attention Module, which learns hierarchical and spatial feature attentions, highlighting critical classification signals while reducing noise. The proposed approach addresses the limitations of the Transformer in local feature learning and spatial awareness, and enabling us to extract multi-order, multi-scale URL feature representations with enhanced attentional focus. PyraTrans is evaluated using 4 benchmark datasets, where it demonstrated significant advancements over prior baseline methods. Particularly, on the imbalanced dataset, our method, with just 10% of the data for training, the TPR is 3.3-6.5 times and the F1-score is 2.9-4.5 times that of the baseline. Our approach also demonstrates robustness against adversarial attacks. Codes and data are available at //github.com/Alixyvtte/PyraTrans.
Despite remarkable success in diverse web-based applications, Graph Neural Networks(GNNs) inherit and further exacerbate historical discrimination and social stereotypes, which critically hinder their deployments in high-stake domains such as online clinical diagnosis, financial crediting, etc. However, current fairness research that primarily craft on i.i.d data, cannot be trivially replicated to non-i.i.d. graph structures with topological dependence among samples. Existing fair graph learning typically favors pairwise constraints to achieve fairness but fails to cast off dimensional limitations and generalize them into multiple sensitive attributes; besides, most studies focus on in-processing techniques to enforce and calibrate fairness, constructing a model-agnostic debiasing GNN framework at the pre-processing stage to prevent downstream misuses and improve training reliability is still largely under-explored. Furthermore, previous work on GNNs tend to enhance either fairness or privacy individually but few probe into their interplays. In this paper, we propose a novel model-agnostic debiasing framework named MAPPING (\underline{M}asking \underline{A}nd \underline{P}runing and Message-\underline{P}assing train\underline{ING}) for fair node classification, in which we adopt the distance covariance($dCov$)-based fairness constraints to simultaneously reduce feature and topology biases in arbitrary dimensions, and combine them with adversarial debiasing to confine the risks of attribute inference attacks. Experiments on real-world datasets with different GNN variants demonstrate the effectiveness and flexibility of MAPPING. Our results show that MAPPING can achieve better trade-offs between utility and fairness, and mitigate privacy risks of sensitive information leakage.
Accurate localization of mobile terminals is crucial for integrated sensing and communication systems. Existing fingerprint localization methods, which deduce coordinates from channel information in pre-defined rectangular areas, struggle with the heterogeneous fingerprint distribution inherent in non-line-of-sight (NLOS) scenarios. To address the problem, we introduce a novel multi-source information fusion learning framework referred to as the Autosync Multi-Domain NLOS Localization (AMDNLoc). Specifically, AMDNLoc employs a two-stage matched filter fused with a target tracking algorithm and iterative centroid-based clustering to automatically and irregularly segment NLOS regions, ensuring uniform fingerprint distribution within channel state information across frequency, power, and time-delay domains. Additionally, the framework utilizes a segment-specific linear classifier array, coupled with deep residual network-based feature extraction and fusion, to establish the correlation function between fingerprint features and coordinates within these regions. Simulation results demonstrate that AMDNLoc significantly enhances localization accuracy by over 55% compared with traditional convolutional neural network on the wireless artificial intelligence research dataset.
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments. It becomes increasingly crucial in the field of embodied AI, with potential applications in autonomous navigation, search and rescue, and human-robot interaction. In this paper, we propose to address a more practical yet challenging counterpart setting - vision-language navigation in continuous environments (VLN-CE). To develop a robust VLN-CE agent, we propose a new navigation framework, ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments. ETPNav performs online topological mapping of environments by self-organizing predicted waypoints along a traversed path, without prior environmental experience. It privileges the agent to break down the navigation procedure into high-level planning and low-level control. Concurrently, ETPNav utilizes a transformer-based cross-modal planner to generate navigation plans based on topological maps and instructions. The plan is then performed through an obstacle-avoiding controller that leverages a trial-and-error heuristic to prevent navigation from getting stuck in obstacles. Experimental results demonstrate the effectiveness of the proposed method. ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets, respectively. Our code is available at //github.com/MarSaKi/ETPNav.
Pre-trained large language models (LLMs) often need specialization for domain-specific tasks. Low-Rank Adaptation (LoRA) is a popular approach that adapts a base model to multiple tasks by adding lightweight trainable adapters. In this paper, we present CaraServe, a system that efficiently serves many LoRA adapters derived from a common base model. CaraServe maintains the base model on GPUs and dynamically loads activated LoRA adapters from main memory. As GPU loading results in a cold-start that substantially delays token generation, CaraServe employs a CPU-assisted approach. It early starts the activated adapters on CPUs for prefilling as they are being loaded onto GPUs; after loading completes, it then switches to the GPUs for generative LoRA inference. CaraServe develops a highly optimized synchronization mechanism to efficiently coordinate LoRA computation on the CPU and GPU. Moreover, CaraServe employs a rank-aware scheduling algorithm to optimally schedule heterogeneous LoRA requests for maximum service-level objective (SLO) attainment. We have implemented CaraServe and evaluated it against state-of-the-art LoRA serving systems. Our results demonstrate that CaraServe can speed up the average request serving latency by up to 1.4$\times$ and achieve an SLO attainment of up to 99%.
Speaker embeddings carry valuable emotion-related information, which makes them a promising resource for enhancing speech emotion recognition (SER), especially with limited labeled data. Traditionally, it has been assumed that emotion information is indirectly embedded within speaker embeddings, leading to their under-utilization. Our study reveals a direct and useful link between emotion and state-of-the-art speaker embeddings in the form of intra-speaker clusters. By conducting a thorough clustering analysis, we demonstrate that emotion information can be readily extracted from speaker embeddings. In order to leverage this information, we introduce a novel contrastive pretraining approach applied to emotion-unlabeled data for speech emotion recognition. The proposed approach involves the sampling of positive and the negative examples based on the intra-speaker clusters of speaker embeddings. The proposed strategy, which leverages extensive emotion-unlabeled data, leads to a significant improvement in SER performance, whether employed as a standalone pretraining task or integrated into a multi-task pretraining setting.
The deliberative potential of online platforms has been widely examined. However, little is known about how various interface-based reflection nudges impact the quality of deliberation. This paper presents two user studies with 12 and 120 participants, respectively, to investigate the impacts of different reflective nudges on the quality of deliberation. In the first study, we examined five distinct reflective nudges: persona, temporal prompts, analogies and metaphors, cultural prompts and storytelling. Persona, temporal prompts, and storytelling emerged as the preferred nudges for implementation on online deliberation platforms. In the second study, we assess the impacts of these preferred reflectors more thoroughly. Results revealed a significant positive impact of these reflectors on deliberative quality. Specifically, persona promotes a deliberative environment for balanced and opinionated viewpoints while temporal prompts promote more individualised viewpoints. Our findings suggest that the choice of reflectors can significantly influence the dynamics and shape the nature of online discussions.
Introducing HyperSense, our co-designed hardware and software system efficiently controls Analog-to-Digital Converter (ADC) modules' data generation rate based on object presence predictions in sensor data. Addressing challenges posed by escalating sensor quantities and data rates, HyperSense reduces redundant digital data using energy-efficient low-precision ADC, diminishing machine learning system costs. Leveraging neurally-inspired HyperDimensional Computing (HDC), HyperSense analyzes real-time raw low-precision sensor data, offering advantages in handling noise, memory-centricity, and real-time learning. Our proposed HyperSense model combines high-performance software for object detection with real-time hardware prediction, introducing the novel concept of Intelligent Sensor Control. Comprehensive software and hardware evaluations demonstrate our solution's superior performance, evidenced by the highest Area Under the Curve (AUC) and sharpest Receiver Operating Characteristic (ROC) curve among lightweight models. Hardware-wise, our FPGA-based domain-specific accelerator tailored for HyperSense achieves a 5.6x speedup compared to YOLOv4 on NVIDIA Jetson Orin while showing up to 92.1% energy saving compared to the conventional system. These results underscore HyperSense's effectiveness and efficiency, positioning it as a promising solution for intelligent sensing and real-time data processing across diverse applications.
Sequential recommendation (SR) is to accurately recommend a list of items for a user based on her current accessed ones. While new-coming users continuously arrive in the real world, one crucial task is to have inductive SR that can produce embeddings of users and items without re-training. Given user-item interactions can be extremely sparse, another critical task is to have transferable SR that can transfer the knowledge derived from one domain with rich data to another domain. In this work, we aim to present the holistic SR that simultaneously accommodates conventional, inductive, and transferable settings. We propose a novel deep learning-based model, Relational Temporal Attentive Graph Neural Networks (RetaGNN), for holistic SR. The main idea of RetaGNN is three-fold. First, to have inductive and transferable capabilities, we train a relational attentive GNN on the local subgraph extracted from a user-item pair, in which the learnable weight matrices are on various relations among users, items, and attributes, rather than nodes or edges. Second, long-term and short-term temporal patterns of user preferences are encoded by a proposed sequential self-attention mechanism. Third, a relation-aware regularization term is devised for better training of RetaGNN. Experiments conducted on MovieLens, Instagram, and Book-Crossing datasets exhibit that RetaGNN can outperform state-of-the-art methods under conventional, inductive, and transferable settings. The derived attention weights also bring model explainability.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.
We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.