亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we show how large language models (LLMs) can learn statistical dependencies between otherwise unconditionally independent variables due to dataset selection bias. To demonstrate the effect, we developed a masked gender task that can be applied to BERT-family models to reveal spurious correlations between predicted gender pronouns and a variety of seemingly gender-neutral variables like date and location, on pre-trained (unmodified) BERT and RoBERTa large models. Finally, we provide an online demo, inviting readers to experiment further.

相關內容

Electricity consumption forecasting has vital importance for the energy planning of a country. Of the enabling machine learning models, support vector regression (SVR) has been widely used to set up forecasting models due to its superior generalization for unseen data. However, one key procedure for the predictive modeling is feature selection, which might hurt the prediction accuracy if improper features were selected. In this regard, a modified discrete particle swarm optimization (MDPSO) was employed for feature selection in this study, and then MDPSO-SVR hybrid mode was built to predict future electricity consumption. Compared with other well-established counterparts, MDPSO-SVR model consistently performs best in two real-world electricity consumption datasets, which indicates that MDPSO for feature selection can improve the prediction accuracy and the SVR equipped with the MDPSO can be a promised alternative for electricity consumption forecasting.

Benefiting from large-scale Pretrained Vision-Language Models (VL-PMs), the performance of Visual Question Answering (VQA) has started to approach human oracle performance. However, finetuning large-scale VL-PMs with limited data for VQA usually faces overfitting and poor generalization issues, leading to a lack of robustness. In this paper, we aim to improve the robustness of VQA systems (ie, the ability of the systems to defend against input variations and human-adversarial attacks) from the perspective of Information Bottleneck when finetuning VL-PMs for VQA. Generally, internal representations obtained by VL-PMs inevitably contain irrelevant and redundant information for the downstream VQA task, resulting in statistically spurious correlations and insensitivity to input variations. To encourage representations to converge to a minimal sufficient statistic in vision-language learning, we propose the Correlation Information Bottleneck (CIB) principle, which seeks a tradeoff between representation compression and redundancy by minimizing the mutual information (MI) between the inputs and internal representations while maximizing the MI between the outputs and the representations. Meanwhile, CIB measures the internal correlations among visual and linguistic inputs and representations by a symmetrized joint MI estimation. Extensive experiments on five VQA benchmarks of input robustness and two VQA benchmarks of human-adversarial robustness demonstrate the effectiveness and superiority of the proposed CIB in improving the robustness of VQA systems.

A general framework with a series of different methods is proposed to improve the estimate of convex function (or functional) values when only noisy observations of the true input are available. Technically, our methods catch the bias introduced by the convexity and remove this bias from a baseline estimate. Theoretical analysis are conducted to show that the proposed methods can strictly reduce the expected estimate error under mild conditions. When applied, the methods require no specific knowledge about the problem except the convexity and the evaluation of the function. Therefore, they can serve as off-the-shelf tools to obtain good estimate for a wide range of problems, including optimization problems with random objective functions or constraints, and functionals of probability distributions such as the entropy and the Wasserstein distance. Numerical experiments on a wide variety of problems show that our methods can significantly improve the quality of the estimate compared with the baseline method.

Manual coding of text data from open-ended questions into different categories is time consuming and expensive. Automated coding uses statistical/machine learning to train on a small subset of manually coded text answers. Recently, pre-training a general language model on vast amounts of unrelated data and then adapting the model to the specific application has proven effective in natural language processing. Using two data sets, we empirically investigate whether BERT, the currently dominant pre-trained language model, is more effective at automated coding of answers to open-ended questions than other non-pre-trained statistical learning approaches. We found fine-tuning the pre-trained BERT parameters is essential as otherwise BERT's is not competitive. Second, we found fine-tuned BERT barely beats the non-pre-trained statistical learning approaches in terms of classification accuracy when trained on 100 manually coded observations. However, BERT's relative advantage increases rapidly when more manually coded observations (e.g. 200-400) are available for training. We conclude that for automatically coding answers to open-ended questions BERT is preferable to non-pretrained models such as support vector machines and boosting.

Natural language understanding (NLU) models tend to rely on spurious correlations (i.e., dataset bias) to achieve high performance on in-distribution datasets but poor performance on out-of-distribution ones. Most of the existing debiasing methods often identify and weaken these samples with biased features (i.e., superficial surface features that cause such spurious correlations). However, down-weighting these samples obstructs the model in learning from the non-biased parts of these samples. To tackle this challenge, in this paper, we propose to eliminate spurious correlations in a fine-grained manner from a feature space perspective. Specifically, we introduce Random Fourier Features and weighted re-sampling to decorrelate the dependencies between features to mitigate spurious correlations. After obtaining decorrelated features, we further design a mutual-information-based method to purify them, which forces the model to learn features that are more relevant to tasks. Extensive experiments on two well-studied NLU tasks demonstrate that our method is superior to other comparative approaches.

Using graph models with relational information in recommender systems has shown promising results. Yet, most methods are transductive, i.e., they are based on dimensionality reduction architectures. Hence, they require heavy retraining every time new items or users are added. Conversely, inductive methods promise to solve these issues. Nonetheless, all inductive methods rely only on interactions, making recommendations for users with few interactions sub-optimal and even impossible for new items. Therefore, we focus on inductive methods able to also exploit knowledge graphs (KGs). In this work, we propose SimpleRec, a strong baseline that uses a graph neural network and a KG to provide better recommendations than related inductive methods for new users and items. We show that it is unnecessary to create complex model architectures for user representations, but it is enough to allow users to be represented by the few ratings they provide and the indirect connections among them without any user metadata. As a result, we re-evaluate state-of-the-art methods, identify better evaluation protocols, highlight unwarranted conclusions from previous proposals, and showcase a novel, stronger baseline for this task.

In this paper we motivate the causal mechanisms behind sample selection induced collider bias (selection collider bias) that can cause Large Language Models (LLMs) to learn unconditional dependence between entities that are unconditionally independent in the real world. We show that selection collider bias can become amplified in underspecified learning tasks, and although difficult to overcome, we describe a method to exploit the resulting spurious correlations for determination of when a model may be uncertain about its prediction. We demonstrate an uncertainty metric that matches human uncertainty in tasks with gender pronoun underspecification on an extended version of the Winogender Schemas evaluation set, and we provide an online demo where users can apply our uncertainty metric to their own texts and models.

Policymakers often choose a policy bundle that is a combination of different interventions in different dosages. We develop a new technique -- treatment variant aggregation (TVA) -- to select a policy from a large factorial design. TVA pools together policy variants that are not meaningfully different and prunes those deemed ineffective. This allows us to restrict attention to aggregated policy variants, consistently estimate their effects on the outcome, and estimate the best policy effect adjusting for the winner's curse. We apply TVA to a large randomized controlled trial that tests interventions to stimulate demand for immunization in Haryana, India. The policies under consideration include reminders, incentives, and local ambassadors for community mobilization. Cross-randomizing these interventions, with different dosages or types of each intervention, yields 75 combinations. The policy with the largest impact (which combines incentives, ambassadors who are information hubs, and reminders) increases the number of immunizations by 44% relative to the status quo. The most cost-effective policy (information hubs, ambassadors, and SMS reminders but no incentives) increases the number of immunizations per dollar by 9.1% relative to status quo.

Given an unlabeled dataset and an annotation budget, we study how to selectively label a fixed number of instances so that semi-supervised learning (SSL) on such a partially labeled dataset is most effective. We focus on selecting the right data to label, in addition to usual SSL's propagating labels from labeled data to the rest unlabeled data. This instance selection task is challenging, as without any labeled data we do not know what the objective of learning should be. Intuitively, no matter what the downstream task is, instances to be labeled must be representative and diverse: The former would facilitate label propagation to unlabeled data, whereas the latter would ensure coverage of the entire dataset. We capture this idea by selecting cluster prototypes, either in a pretrained feature space, or along with feature optimization, both without labels. Our unsupervised selective labeling consistently improves SSL methods over state-of-the-art active learning given labeled data, by 8 to 25 times in label efficiency. For example, it boosts FixMatch by 10% (14%) in accuracy on CIFAR-10 (ImageNet-1K) with 0.08% (0.2%) labeled data, demonstrating that small computation spent on selecting what data to label brings significant gain especially under a low annotation budget. Our work sets a new standard for practical and efficient SSL.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

北京阿比特科技有限公司