亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Photon counting detectors such as single-photon avalanche diode (SPAD) arrays can be utilized to improve the sensitivity of optical wireless communication (OWC) systems. However, the achievable data rate of SPAD-based OWC systems is strongly limited by the nonlinearity induced by SPAD dead time. In this work, the performances of SPAD receivers for two different modulation schemes, namely, on-off keying (OOK) and orthogonal frequency division multiplexing (OFDM), are compared demonstrating contrasting optimal regimes of operation. We employ nonlinear equalization and peak-to-average power ratio optimization by adjusting the OFDM clipping level to achieve record experimental data rates of up to 5 Gbps. In particular, the experimental results demonstrate the achievable data rates of 3.22 Gbps and 5 Gbps when OOK and OFDM are employed, respectively. It is also illustrated that to achieve the best data rate performance over a wide range of received power, adaptive switching between OOK and OFDM may be utilized.

相關內容

The extreme or maximum age of information (AoI) is analytically studied for wireless communication systems. In particular, a wireless powered single-antenna source node and a receiver (connected to the power grid) equipped with multiple antennas are considered when operated under independent Rayleigh-faded channels. Via the extreme value theory and its corresponding statistical features, we demonstrate that the extreme AoI converges to the Gumbel distribution whereas its corresponding parameters are obtained in straightforward closed-form expressions. Capitalizing on this result, the risk of the extreme AoI realization is analytically evaluated according to some relevant performance metrics, while some useful engineering insights are manifested.

In this paper, we propose a cell-free scheme for unmanned aerial vehicle (UAV) base stations (BSs) to manage the severe intercell interference between terrestrial users and UAV-BSs of neighboring cells. Since the cell-free scheme requires enormous bandwidth for backhauling, we propose to use the sub-terahertz (sub-THz) band for the backhaul links between UAV-BSs and central processing unit (CPU). Also, because the sub-THz band requires a reliable line-of-sight link, we propose to use a high altitude platform station (HAPS) as a CPU. At the first time-slot of the proposed scheme, users send their messages to UAVs at the sub-6 GHz band. The UAVs then apply match-filtering and power allocation. At the second time-slot, at each UAV, orthogonal resource blocks are allocated for each user at the sub-THz band, and the signals are sent to the HAPS after analog beamforming. In the HAPS receiver, after analog beamforming, the message of each user is decoded. We formulate an optimization problem that maximizes the minimum signal-to-interference-plus-noise ratio of users by finding the optimum allocated power as well as the optimum locations of UAVs. Simulation results demonstrate the superiority of the proposed scheme compared with aerial cellular and terrestrial cell-free baseline schemes.

We propose a learning-based method for the joint design of a transmit and receive filter, the constellation geometry and associated bit labeling, as well as a neural network (NN)-based detector. The method maximizes an achievable information rate, while simultaneously satisfying constraints on the adjacent channel leakage ratio (ACLR) and peak-to-average power ratio (PAPR). This allows control of the tradeoff between spectral containment, peak power, and communication rate. Evaluation on an additive white Gaussian noise (AWGN) channel shows significant reduction of ACLR and PAPR compared to a conventional baseline relying on quadrature amplitude modulation (QAM) and root-raised-cosine (RRC), without significant loss of information rate. When considering a 3rd Generation Partnership Project (3GPP) multipath channel, the learned waveform and neural receiver enable competitive or higher rates than an orthogonal frequency division multiplexing (OFDM) baseline, while reducing the ACLR by 10 dB and the PAPR by 2 dB. The proposed method incurs no additional complexity on the transmitter side and might be an attractive tool for waveform design of beyond-5G systems.

We consider performance enhancement of asymmetrically-clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and related optical OFDM schemes, which are variations of OFDM in intensity-modulated optical wireless communications. Unlike most existing studies on specific designs of improved receivers, this paper investigates information theoretic limits of all possible receivers. For independent and identically distributed complex Gaussian inputs, we obtain an exact characterization of information rate of ACO-OFDM with improved receivers for all SNRs. It is proved that the high-SNR gain of improved receivers asymptotically achieve 1/4 bits per channel use, which is equivalent to 3 dB in electrical SNR or 1.5 dB in optical SNR; as the SNR decreases, the maximum achievable SNR gain of improved receivers decreases monotonically to a non-zero low-SNR limit, corresponding to an information rate gain of 36.3%. For practically used constellations, we derive an upper bound on the gain of improved receivers. Numerical results demonstrate that the upper bound can be approached to within 1 dB in optical SNR by combining existing improved receivers and coded modulation. We also show that our information theoretic analyses can be extended to Flip-OFDM and PAM-DMT. Our results imply that, for the considered schemes, improved receivers may reduce the gap to channel capacity significantly at low-to-moderate SNR.

This paper investigates the performance of streaming codes in low-latency applications over a multi-link three-node relayed network. The source wishes to transmit a sequence of messages to the destination through a relay. Each message must be reconstructed after a fixed decoding delay. The special case with one link connecting each node has been studied by Fong et. al [1], and a multi-hop multi-link setting has been studied by Domanovitz et. al [2]. The topology with three nodes and multiple links is studied in this paper. Each link is subject to a different number of erasures due to different channel conditions. An information-theoretic upper bound is derived, and an achievable scheme is presented. The proposed scheme judiciously allocates rates for each link based on the concept of delay spectrum. The achievable scheme is compared to two baseline schemes and the scheme proposed in [2]. Experimental results show that this scheme achieves higher rates than the other schemes, and can achieve the upper bound even in non-trivial scenarios. The scheme is further extended to handle different propagation delays in each link, something not previously considered in the literature. Simulations over statistical channels show that the proposed scheme can outperform the simpler baseline under practical models.

THz communication is regarded as one of the potential key enablers for next-generation wireless systems. While THz frequency bands provide abundant bandwidths and extremely high data rates, the operation at THz bands is mandated by short communication ranges and narrow pencil beams, which are highly susceptible to user mobility and beam misalignment as well as channel blockages. This raises the need for novel beam tracking methods that take into account the tradeoff between enhancing the received signal strength by increasing beam directivity, and increasing the coverage probability by widening the beam. To address these challenges, a multi-objective optimization problem is formulated with the goal of jointly maximizing the ergodic rate and minimizing the outage probability subject to transmit power and average overhead constraints. Then, a novel parameterized beamformer with dynamic beamwidth adaptation is proposed. In addition to the precoder, an event-based beam tracking approach is introduced that enables reacting to outages caused by beam misalignment and dynamic blockage while maintaining a low pilot overhead. Simulation results show that our proposed beamforming scheme improves average rate performance and reduces the amount of communication outages caused by beam misalignment. Moreover, the proposed event-triggered channel estimation approach enables low-overhead yet reliable communication.

Terahertz (THz) communications have naturally promising physical layer security (PLS) performance in the angular domain due to the high directivity feature. However, if eavesdroppers reside in the beam sector, the directivity fails to work effectively to handle this range-domain security problem. More critically, with an eavesdropper inside the beam sector and nearer to the transmitter than the legitimate receiver, i.e., in close proximity, secure communication is jeopardized. This open challenge motivates this work to study PLS techniques to enhance THz range-angle security. In this paper, a novel widely-spaced array and beamforming (WASABI) design for THz range-angle secure communication is proposed, based on the uniform planar array and hybrid beamforming. Specifically, the WASABI design is theoretically proved to achieve the optimal secrecy rate powered by the non-constrained optimum approaching (NCOA) algorithm with more than one RF chain, i.e., with the hybrid beamforming scheme. Moreover, with a low-complexity and sub-optimal analog beamforming, the WASABI scheme can achieve sub-optimal performance with less than 5% secrecy rate degradation. Simulation results illustrate that our proposed widely-spaced antenna communication scheme can ensure a 6bps/Hz secrecy rate when the transmit power is 10dBm. Finally, a frequency diverse array, as an advocated range security candidate in the literature, is proven to be ineffective to enhance range security.

In this letter, we investigate an unmanned aerial vehicle (UAV) communication system, where an intelligent reflecting surface (IRS) is deployed to assist in the transmission from a ground node (GN) to the UAV in the presence of a jammer. We aim to maximize the average rate of the UAV communication by jointly optimizing the GN's transmit power, the IRS's passive beamforming and the UAV's trajectory. However, the formulated problem is difficult to solve due to the non-convex objective function and the coupled optimization variables. Thus, to tackle it, we propose an alternating optimization (AO) based algorithm by exploiting the successive convex approximation (SCA) and semidefinite relaxation (SDR) techniques. Simulation results show that the proposed algorithm can significantly improve the average rate compared with the benchmark algorithms. Moreover, it also shows that when the jamming power is large and the number of IRS elements is relatively small, deploying the IRS near the jammer outperforms deploying it near the GN, and vice versa.

Integrated Sensing and Communication (ISAC) has attracted substantial attraction in recent years for spectral efficiency improvement, enabling hardware and spectrum sharing for simultaneous sensing and signaling operations. In-band Full Duplex (FD) is being considered as a key enabling technology for ISAC applications due to its simultaneous transmission and reception capability. In this paper, we present an FD-based ISAC system operating at millimeter Wave (mmWave) frequencies, where a massive Multiple-Input Multiple-Output (MIMO) Base Station (BS) node employing hybrid Analog and Digital (A/D) beamforming is communicating with a DownLink (DL) multi-antenna user and the same waveform is utilized at the BS receiver for sensing the radar targets in its coverage environment. We develop a sensing algorithm that is capable of estimating Direction of Arrival (DoA), range, and relative velocity of the radar targets. A joint optimization framework for designing the A/D transmit and receive beamformers as well as the Self-Interference (SI) cancellation is presented with the objective to maximize the achievable DL rate and the accuracy of the radar target sensing performance. Our simulation results, considering fifth Generation (5G) Orthogonal Frequency Division Multiplexing (OFDM) waveforms, verify our approach's high precision in estimating DoA, range, and velocity of multiple radar targets, while maximizing the DL communication rate.

In this study, we propose a novel machine learning based algorithm to improve the performance of beyond 5 generation (B5G) wireless communication system that is assisted by Orthogonal Frequency Division Multiplexing (OFDM) and Non-Orthogonal Multiple Access (NOMA) techniques. The non-linear soft margin support vector machine (SVM) problem is used to provide an automatic modulation classifier (AMC) and a signal power to noise and interference ratio (SINR) estimator. The estimation results of AMC and SINR are used to reassign the modulation type, codding rate, and transmit power through frames of eNode B connections. The AMC success rate versus SINR, total power consuming, and sum capacity are evaluated for OFDM-NOMA assisted 5G system. Results show improvement of success rate compared of some published method. Furthermore, the algorithm directly computes SINR after signal is detected by successive interference cancellation (SIC) and before any signal decoding. Moreover, because of the direct sense of physical channel, the presented algorithm can discount occupied symbols (overhead signaling) for channel quality information (CQI) in network communication signaling. The results also prove that the proposed algorithm reduces the total power consumption and increases the sum capacity through the eNode B connections. Simulation results in compare to other algorithms show more successful AMC, efficient SINR estimator, easier practical implantation, less overhead signaling, less power consumption, and more capacity achievement.

北京阿比特科技有限公司