In peer-to-peer (P2P) energy trading, a secured infrastructure is required to manage trade and record monetary transactions. A central server/authority can be used for this. But there is a risk of central authority influencing the energy price. So blockchain technology is being preferred as a secured infrastructure in P2P trading. Blockchain provides a distributed repository along with smart contracts for trade management. This reduces the influence of central authority in trading. However, these blockchain-based systems still rely on a central authority to pair/match sellers with consumers for trading energy. The central authority can interfere with the matching process to profit a selected set of users. Further, a centralized authority also charges for its services, thereby increasing the cost of energy. We propose two distributed mechanisms to match sellers with consumers. The first mechanism doesn't allow for price negotiations between sellers and consumers, whereas the second does. We also calculate the time complexity and the stability of the matching process for both mechanisms. Using simulation, we compare the influence of centralized control and energy prices between the proposed and the existing mechanisms. The overall work strives to promote the free market and reduce energy prices.
The Internet of underwater things (IoUT) is envisioned to be an essential part of maritime activities. Given the IoUT devices' wide-area distribution and constrained transmit power, autonomous underwater vehicles (AUVs) have been widely adopted for collecting and forwarding the data sensed by IoUT devices to the surface-stations. In order to accommodate the diverse requirements of IoUT applications, it is imperative to conceive a multi-tier underwater computing (MTUC) framework by carefully harnessing both the computing and the communications as well as the storage resources of both the surface-station and of the AUVs as well as of the IoUT devices. Furthermore, to meet the stringent energy constraints of the IoUT devices and to reduce the operating cost of the MTUC framework, a joint environment-aware AUV trajectory design and resource management problem is formulated, which is a high-dimensional NP-hard problem. To tackle this challenge, we first transform the problem into a Markov decision process (MDP) and solve it with the aid of the asynchronous advantage actor-critic (A3C) algorithm. Our simulation results demonstrate the superiority of our scheme.
Blockchain is considered to be the critical backbone technology for secure and trusted Internet of Things (IoT) on the future 6G network.However, the IoT network is usually with the complex wireless environment, where the communication is not reliable and the connectivity is complicated. Deploying a blockchain system in the complex wireless IoT network is challenging. Due to the limited resources, complex wireless environment and the property of self-interest, IoT devices do not have the internal motivation to consume energy and time to maintain the blockchain. Furthermore, existing incentive mechanism in blockchain is not compatible well with the wireless IoT network. In this paper, to incentivize IoT devices to join the construction of the wireless blockchain network, we propose a multi dimentional contract which optimizes the blockchain utility while addressing the issues of adverse selection and moral hazard. Specifically, the proposed contract not only considers the IoT devices' hash rate and transmission power, but also explores the network connectivity from the perspective of the network complexity. We incestigate the impact of these factors on energy consumption and the block confirmation probability by the experiments under different network sizes and average link probability. Numerical results demonstrate that our proposed contract mechanism is feasible and effective. Compared with the contract with adverse selection, the proposed contract improves blockchain utility by 35%, which is closer to the perfect information contract.
Tailor-made for massive connectivity and sporadic access, grant-free random access has become a promising candidate access protocol for massive machine-type communications (mMTC). Compared with conventional grant-based protocols, grant-free random access skips the exchange of scheduling information to reduce the signaling overhead, and facilitates sharing of access resources to enhance access efficiency. However, some challenges remain to be addressed in the receiver design, such as unknown identity of active users and multi-user interference (MUI) on shared access resources. In this work, we deal with the problem of joint user activity and data detection for grant-free random access. Specifically, the approximate message passing (AMP) algorithm is first employed to mitigate MUI and decouple the signals of different users. Then, we extend the data symbol alphabet to incorporate the null symbols from inactive users. In this way, the joint user activity and data detection problem is formulated as a clustering problem under the Gaussian mixture model. Furthermore, in conjunction with the AMP algorithm, a variational Bayesian inference based clustering (VBIC) algorithm is developed to solve this clustering problem. Simulation results show that, compared with state-of-art solutions, the proposed AMP-combined VBIC (AMP-VBIC) algorithm achieves a significant performance gain in detection accuracy.
We study recovery of amplitudes and nodes of a finite impulse train from a limited number of equispaced noisy frequency samples. This problem is known as super-resolution (SR) under sparsity constraints and has numerous applications, including direction of arrival and finite rate of innovation sampling. Prony's method is an algebraic technique which fully recovers the signal parameters in the absence of measurement noise. In the presence of noise, Prony's method may experience significant loss of accuracy, especially when the separation between Dirac pulses is smaller than the Nyquist-Shannon-Rayleigh (NSR) limit. In this work we combine Prony's method with a recently established decimation technique for analyzing the SR problem in the regime where the distance between two or more pulses is much smaller than the NSR limit. We show that our approach attains optimal asymptotic stability in the presence of noise. Our result challenges the conventional belief that Prony-type methods tend to be highly numerically unstable.
More than 100,000 children in the foster care system are currently waiting for an adoptive placement in the United States, where adoptions from foster care occur through a semi-decentralized search and matching process with the help of local agencies. Traditionally, most agencies have employed a family-driven search process, where prospective families respond to announcements made by the caseworker responsible for a child. However, recently some agencies switched to a caseworker-driven search process, where the caseworker conducts a targeted search of suitable families for the child. We introduce a novel search-and-matching model to capture essential aspects of adoption and compare these two search processes through a game-theoretical analysis. We show that the search equilibria induced by (novel) threshold strategies form a lattice structure under either approach. Our main theoretical result establishes that the equilibrium outcomes in family-driven search can never Pareto dominate the outcomes in caseworker-driven search, but there are instances where each caseworker-driven search outcome Pareto dominates all family-driven search outcomes. We also find that when families are sufficiently impatient, caseworker driven search is better for all children. We illustrate numerically that for a wide range of parameters, most agents are better off under caseworker-driven search.
Intermittent connectivity of clients to the parameter server (PS) is a major bottleneck in federated edge learning frameworks. The lack of constant connectivity induces a large generalization gap, especially when the local data distribution amongst clients exhibits heterogeneity. To overcome intermittent communication outages between clients and the central PS, we introduce the concept of collaborative relaying wherein the participating clients relay their neighbors' local updates to the PS in order to boost the participation of clients with poor connectivity to the PS. We propose a semi-decentralized federated learning framework in which at every communication round, each client initially computes a local consensus of a subset of its neighboring clients' updates, and eventually transmits to the PS a weighted average of its own update and those of its neighbors'. We appropriately optimize these local consensus weights to ensure that the global update at the PS is unbiased with minimal variance - consequently improving the convergence rate. Numerical evaluations on the CIFAR-10 dataset demonstrate that our collaborative relaying approach outperforms federated averaging-based benchmarks for learning over intermittently-connected networks such as when the clients communicate over millimeter wave channels with intermittent blockages.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.
The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.