As the use of large language models (LLMs) increases within society, as does the risk of their misuse. Appropriate safeguards must be in place to ensure LLM outputs uphold the ethical standards of society, highlighting the positive role that artificial intelligence technologies can have. Recent events indicate ethical concerns around conventionally trained LLMs, leading to overall unsafe user experiences. This motivates our research question: how do we ensure LLM alignment? In this work, we introduce a test suite of unique prompts to foster the development of aligned LLMs that are fair, safe, and robust. We show that prompting LLMs at every step of the development pipeline, including data curation, pre-training, and fine-tuning, will result in an overall more responsible model. Our test suite evaluates outputs from four state-of-the-art language models: GPT-3.5, GPT-4, OPT, and LLaMA-2. The assessment presented in this paper highlights a gap between societal alignment and the capabilities of current LLMs. Additionally, implementing a test suite such as ours lowers the environmental overhead of making models safe and fair.
Metamodels, or the regression analysis of Monte Carlo simulation (MCS) results, provide a powerful tool to summarize MCS findings. However, an as of yet unexplored approach is the use of multilevel metamodels (MLMM) that better account for the dependent data structure of MCS results that arises from fitting multiple models to the same simulated data set. In this study, we articulate the theoretical rationale for the MLMM and illustrate how it can dramatically improve efficiency over the traditional regression approach, better account for complex MCS designs, and provide new insights into the generalizability of MCS findings.
In emergency search and rescue scenarios, the quick location of trapped people is essential. However, disasters can render the Global Positioning System (GPS) unusable. Unmanned aerial vehicles (UAVs) with localization devices can serve as mobile anchors due to their agility and high line-of-sight (LoS) probability. Nonetheless, the number of available UAVs during the initial stages of disaster relief is limited, and innovative methods are needed to quickly plan UAV trajectories to locate non-uniformly distributed dynamic targets while ensuring localization accuracy. To address this challenge, we design a single UAV localization method without hovering, use the maximum likelihood estimation (MLE) method to estimate the location of mobile users and define the upper bound of the localization error by considering users' movement.Combining this localization method and localization error-index, we utilize the enhanced particle swarm optimization (EPSO) algorithm and edge access strategy to develop a low complexity localization-oriented adaptive trajectory planning algorithm. Simulation results demonstrate that our method outperforms other baseline algorithms, enabling faster localization without compromising localization accuracy.
Tactics, Techniques, and Procedures (TTPs) outline the methods attackers use to exploit vulnerabilities. The interpretation of TTPs in the MITRE ATT&CK framework can be challenging for cybersecurity practitioners due to presumed expertise, complex dependencies, and inherent ambiguity. Meanwhile, advancements with Large Language Models (LLMs) have led to recent surge in studies exploring its uses in cybersecurity operations. This leads us to question how well encoder-only (e.g., RoBERTa) and decoder-only (e.g., GPT-3.5) LLMs can comprehend and summarize TTPs to inform analysts of the intended purposes (i.e., tactics) of a cyberattack procedure. The state-of-the-art LLMs have shown to be prone to hallucination by providing inaccurate information, which is problematic in critical domains like cybersecurity. Therefore, we propose the use of Retrieval Augmented Generation (RAG) techniques to extract relevant contexts for each cyberattack procedure for decoder-only LLMs (without fine-tuning). We further contrast such approach against supervised fine-tuning (SFT) of encoder-only LLMs. Our results reveal that both the direct-use of decoder-only LLMs (i.e., its pre-trained knowledge) and the SFT of encoder-only LLMs offer inaccurate interpretation of cyberattack procedures. Significant improvements are shown when RAG is used for decoder-only LLMs, particularly when directly relevant context is found. This study further sheds insights on the limitations and capabilities of using RAG for LLMs in interpreting TTPs.
The Tactile Internet paradigm is set to revolutionize human society by enabling skill-set delivery and haptic communication over ultra-reliable, low-latency networks. The emerging sixth-generation (6G) mobile communication systems are envisioned to underpin this Tactile Internet ecosystem at the network edge by providing ubiquitous global connectivity. However, apart from a multitude of opportunities of the Tactile Internet, security and privacy challenges emerge at the forefront. We believe that the recently standardized QUIC protocol, characterized by end-to-end encryption and reduced round-trip delay would serve as the backbone of Tactile Internet. In this article, we envision a futuristic scenario where a QUIC-enabled network uses the underlying 6G communication infrastructure to achieve the requirements for Tactile Internet. Interestingly this requires a deeper investigation of a wide range of security and privacy challenges in QUIC, that need to be mitigated for its adoption in Tactile Internet. Henceforth, this article reviews the existing security and privacy attacks in QUIC and their implication on users. Followed by that, we discuss state-of-the-art attack mitigation strategies and investigate some of their drawbacks with possible directions for future work
Large Language Models (LLMs) have emerged as a pivotal force in language technology. Their robust reasoning capabilities and expansive knowledge repositories have enabled exceptional zero-shot generalization abilities across various facets of the natural language processing field, including information retrieval (IR). In this paper, we conduct an in-depth investigation into the utility of documents generated by LLMs for IR. We introduce a simple yet effective framework, Multi-Text Generation Integration (MuGI), to augment existing IR methodologies. Specifically, we prompt LLMs to generate multiple pseudo references and integrate with query for retrieval. The training-free MuGI model eclipses existing query expansion strategies, setting a new standard in sparse retrieval. It outstrips supervised counterparts like ANCE and DPR, achieving a notable over 18% enhancement in BM25 on the TREC DL dataset and a 7.5% increase on BEIR. Through MuGI, we have forged a rapid and high-fidelity re-ranking pipeline. This allows a relatively small 110M parameter retriever to surpass the performance of larger 3B models in in-domain evaluations, while also bridging the gap in out-of-distribution situations. We release our code and all generated references at //github.com/lezhang7/Retrieval_MuGI.
Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.