亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A strict lower bound for the diameter of a symmetric graph is proposed, which is calculable with the order $n$ and other local parameters of the graph such as the degree $k\,(\geq 3)$, even girth $g\,(\geq 4)$, and number of $g$-cycles traversing a vertex, which are easily determined by inspecting a small portion of the graph (unless the girth is large). It is applied to the symmetric Cayley graphs of some Rubik's Cube groups of various sizes and metrics, yielding slightly tighter lower bounds of the diameters than those for random $k$-regular graphs proposed by Bollob\'{a}s and de la Vega. They range from 60% to 77% of the correct diameters of large-$n$ graphs.

相關內容

We improve bounds on the degree and sparsity of Boolean functions representing the Legendre symbol as well as on the $N$th linear complexity of the Legendre sequence. We also prove similar results for both the Liouville function for integers and its analog for polynomials over $\mathbb{F}_2$, or more general for any (binary) arithmetic function which satisfies $f(2n)=-f(n)$ for $n=1,2,\ldots$

We propose a new numerical method for $\alpha$-dissipative solutions of the Hunter-Saxton equation, where $\alpha$ belongs to $W^{1, \infty}(\mathbb{R}, [0, 1))$. The method combines a projection operator with a generalized method of characteristics and an iteration scheme, which is based on enforcing minimal time steps whenever breaking times cluster. Numerical examples illustrate that these minimal time steps increase the efficiency of the algorithm substantially. Moreover, convergence of the wave profile is shown in $C([0, T], L^{\infty}(\mathbb{R}))$ for any finite $T \geq 0$.

QAC$^0$ is the class of constant-depth quantum circuits with polynomially many ancillary qubits, where Toffoli gates on arbitrarily many qubits are allowed. In this work, we show that the parity function cannot be computed in QAC$^0$, resolving a long-standing open problem in quantum circuit complexity more than twenty years old. As a result, this proves ${\rm QAC}^0 \subsetneqq {\rm QAC}_{\rm wf}^0$. We also show that any QAC circuit of depth $d$ that approximately computes parity on $n$ bits requires $2^{\widetilde{\Omega}(n^{1/d})}$ ancillary qubits, which is close to tight. This implies a similar lower bound on approximately preparing cat states using QAC circuits. Finally, we prove a quantum analog of the Linial-Mansour-Nisan theorem for QAC$^0$. This implies that, for any QAC$^0$ circuit $U$ with $a={\rm poly}(n)$ ancillary qubits, and for any $x\in\{0,1\}^n$, the correlation between $Q(x)$ and the parity function is bounded by ${1}/{2} + 2^{-\widetilde{\Omega}(n^{1/d})}$, where $Q(x)$ denotes the output of measuring the output qubit of $U|x,0^a\rangle$. All the above consequences rely on the following technical result. If $U$ is a QAC$^0$ circuit with $a={\rm poly}(n)$ ancillary qubits, then there is a distribution $\mathcal{D}$ of bounded polynomials of degree polylog$(n)$ such that with high probability, a random polynomial from $\mathcal{D}$ approximates the function $\langle x,0^a| U^\dag Z_{n+1} U |x,0^a\rangle$ for a large fraction of $x\in \{0,1\}^n$. This result is analogous to the Razborov-Smolensky result on the approximation of AC$^0$ circuits by random low-degree polynomials.

The Johnson--Lindenstrauss (JL) lemma is a powerful tool for dimensionality reduction in modern algorithm design. The lemma states that any set of high-dimensional points in a Euclidean space can be flattened to lower dimensions while approximately preserving pairwise Euclidean distances. Random matrices satisfying this lemma are called JL transforms (JLTs). Inspired by existing $s$-hashing JLTs with exactly $s$ nonzero elements on each column, the present work introduces an ensemble of sparse matrices encompassing so-called $s$-hashing-like matrices whose expected number of nonzero elements on each column is~$s$. The independence of the sub-Gaussian entries of these matrices and the knowledge of their exact distribution play an important role in their analyses. Using properties of independent sub-Gaussian random variables, these matrices are demonstrated to be JLTs, and their smallest and largest singular values are estimated non-asymptotically using a technique from geometric functional analysis. As the dimensions of the matrix grow to infinity, these singular values are proved to converge almost surely to fixed quantities (by using the universal Bai--Yin law), and in distribution to the Gaussian orthogonal ensemble (GOE) Tracy--Widom law after proper rescalings. Understanding the behaviors of extreme singular values is important in general because they are often used to define a measure of stability of matrix algorithms. For example, JLTs were recently used in derivative-free optimization algorithmic frameworks to select random subspaces in which are constructed random models or poll directions to achieve scalability, whence estimating their smallest singular value in particular helps determine the dimension of these subspaces.

In this work is considered an elliptic problem, referred to as the Ventcel problem, involvinga second order term on the domain boundary (the Laplace-Beltrami operator). A variationalformulation of the Ventcel problem is studied, leading to a finite element discretization. Thefocus is on the construction of high order curved meshes for the discretization of the physicaldomain and on the definition of the lift operator, which is aimed to transform a functiondefined on the mesh domain into a function defined on the physical one. This lift is definedin a way as to satisfy adapted properties on the boundary, relatively to the trace operator.The Ventcel problem approximation is investigated both in terms of geometrical error and offinite element approximation error. Error estimates are obtained both in terms of the meshorder r $\ge$ 1 and to the finite element degree k $\ge$ 1, whereas such estimates usually have beenconsidered in the isoparametric case so far, involving a single parameter k = r. The numericalexperiments we led, both in dimension 2 and 3, allow us to validate the results obtained andproved on the a priori error estimates depending on the two parameters k and r. A numericalcomparison is made between the errors using the former lift definition and the lift defined inthis work establishing an improvement in the convergence rate of the error in the latter case.

Self-orthogonal codes are of interest as they have important applications in quantum codes, lattices and many areas. In this paper, based on the weakly regular plateaued functions or plateaued Boolean functions, we construct a family of linear codes with four nonzero weights. This family of linear codes is proved to be not only self-orthogonal but also optimally or almost optimally extendable. Besides, we derive binary and ternary linearly complementary dual codes (LCD codes for short) with new parameters from this family of codes. Some families of self-dual codes are also obtained as byproducts.

The sum-of-squares hierarchy of semidefinite programs has become a common tool for algorithm design in theoretical computer science, including problems in quantum information. In this work we study a connection between a Hermitian version of the SoS hierarchy, related to the quantum de Finetti theorem, and geometric quantization of compact K\"ahler manifolds (such as complex projective space $\mathbb{C}P^{d}$, the set of all pure states in a $(d + 1)$-dimensional Hilbert space). We show that previously known HSoS rounding algorithms can be recast as quantizing an objective function to obtain a finite-dimensional matrix, finding its top eigenvector, and then (possibly nonconstructively) rounding it by using a version of the Husimi quasiprobability distribution. Dually, we recover most known quantum de Finetti theorems by doing the same steps in the reverse order: a quantum state is first approximated by its Husimi distribution, and then quantized to obtain a separable state approximating the original one. In cases when there is a transitive group action on the manifold we give some new proofs of existing de Finetti theorems, as well as some applications including a new version of Renner's exponential de Finetti theorem proven using the Borel--Weil--Bott theorem, and hardness of approximation results and optimal degree-2 integrality gaps for the basic SDP relaxation of \textsc{Quantum Max-$d$-Cut} (for arbitrary $d$). We also describe how versions of these results can be proven when there is no transitive group action. In these cases we can deduce some error bounds for the HSoS hierarchy on complex projective varieties which are smooth.

The problem of identifying the satisfiability threshold of random $3$-SAT formulas has received a lot of attention during the last decades and has inspired the study of other threshold phenomena in random combinatorial structures. The classical assumption in this line of research is that, for a given set of $n$ Boolean variables, each clause is drawn uniformly at random among all sets of three literals from these variables, independently from other clauses. Here, we keep the uniform distribution of each clause, but deviate significantly from the independence assumption and consider richer families of probability distributions. For integer parameters $n$, $m$, and $k$, we denote by $\DistFamily_k(n,m)$ the family of probability distributions that produce formulas with $m$ clauses, each selected uniformly at random from all sets of three literals from the $n$ variables, so that the clauses are $k$-wise independent. Our aim is to make general statements about the satisfiability or unsatisfiability of formulas produced by distributions in $\DistFamily_k(n,m)$ for different values of the parameters $n$, $m$, and $k$.

We propose a novel, highly efficient, second-order accurate, long-time unconditionally stable numerical scheme for a class of finite-dimensional nonlinear models that are of importance in geophysical fluid dynamics. The scheme is highly efficient in the sense that only a (fixed) symmetric positive definite linear problem (with varying right hand sides) is involved at each time-step. The solutions to the scheme are uniformly bounded for all time. We show that the scheme is able to capture the long-time dynamics of the underlying geophysical model, with the global attractors as well as the invariant measures of the scheme converge to those of the original model as the step size approaches zero. In our numerical experiments, we take an indirect approach, using long-term statistics to approximate the invariant measures. Our results suggest that the convergence rate of the long-term statistics, as a function of terminal time, is approximately first order using the Jensen-Shannon metric and half-order using the L1 metric. This implies that very long time simulation is needed in order to capture a few significant digits of long time statistics (climate) correct. Nevertheless, the second order scheme's performance remains superior to that of the first order one, requiring significantly less time to reach a small neighborhood of statistical equilibrium for a given step size.

The gradient bounds of generalized barycentric coordinates play an essential role in the $H^1$ norm approximation error estimate of generalized barycentric interpolations. Similarly, the $H^k$ norm, $k>1$, estimate needs upper bounds of high-order derivatives, which are not available in the literature. In this paper, we derive such upper bounds for the Wachspress generalized barycentric coordinates on simple convex $d$-dimensional polytopes, $d\ge 1$. The result can be used to prove optimal convergence for Wachspress-based polytopal finite element approximation of, for example, fourth-order elliptic equations. Another contribution of this paper is to compare various shape-regularity conditions for simple convex polytopes, and to clarify their relations using knowledge from convex geometry.

北京阿比特科技有限公司