亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the general class of time-homogeneous dynamical systems, both discrete and continuous, and study the problem of learning a meaningful representation of the state from observed data. This is instrumental for the task of learning a forward transfer operator of the system, that in turn can be used for forecasting future states or observables. The representation, typically parametrized via a neural network, is associated with a projection operator and is learned by optimizing an objective function akin to that of canonical correlation analysis (CCA). However, unlike CCA, our objective avoids matrix inversions and therefore is generally more stable and applicable to challenging scenarios. Our objective is a tight relaxation of CCA and we further enhance it by proposing two regularization schemes, one encouraging the orthogonality of the components of the representation while the other exploiting Chapman-Kolmogorov's equation. We apply our method to challenging discrete dynamical systems, discussing improvements over previous methods, as well as to continuous dynamical systems.

相關內容

We propose a novel estimation approach for a general class of semi-parametric time series models where the conditional expectation is modeled through a parametric function. The proposed class of estimators is based on a Gaussian quasi-likelihood function and it relies on the specification of a parametric pseudo-variance that can contain parametric restrictions with respect to the conditional expectation. The specification of the pseudo-variance and the parametric restrictions follow naturally in observation-driven models with bounds in the support of the observable process, such as count processes and double-bounded time series. We derive the asymptotic properties of the estimators and a validity test for the parameter restrictions. We show that the results remain valid irrespective of the correct specification of the pseudo-variance. The key advantage of the restricted estimators is that they can achieve higher efficiency compared to alternative quasi-likelihood methods that are available in the literature. Furthermore, the testing approach can be used to build specification tests for parametric time series models. We illustrate the practical use of the methodology in a simulation study and two empirical applications featuring integer-valued autoregressive processes, where assumptions on the dispersion of the thinning operator are formally tested, and autoregressions for double-bounded data with application to a realized correlation time series.

Muscle forces and joint kinematics estimated with musculoskeletal (MSK) modeling techniques offer useful metrics describing movement quality. Model-based computational MSK models can interpret the dynamic interaction between the neural drive to muscles, muscle dynamics, body and joint kinematics, and kinetics. Still, such a set of solutions suffers from high computational time and muscle recruitment problems, especially in complex modeling. In recent years, data-driven methods have emerged as a promising alternative due to the benefits of flexibility and adaptability. However, a large amount of labeled training data is not easy to be acquired. This paper proposes a physics-informed deep learning method based on MSK modeling to predict joint motion and muscle forces. The MSK model is embedded into the neural network as an ordinary differential equation (ODE) loss function with physiological parameters of muscle activation dynamics and muscle contraction dynamics to be identified. These parameters are automatically estimated during the training process which guides the prediction of muscle forces combined with the MSK forward dynamics model. Experimental validations on two groups of data, including one benchmark dataset and one self-collected dataset from six healthy subjects, are performed. The results demonstrate that the proposed deep learning method can effectively identify subject-specific MSK physiological parameters and the trained physics-informed forward-dynamics surrogate yields accurate motion and muscle forces predictions.

The modeling and simulation of high-dimensional multiscale systems is a critical challenge across all areas of science and engineering. It is broadly believed that even with today's computer advances resolving all spatiotemporal scales described by the governing equations remains a remote target. This realization has prompted intense efforts to develop model order reduction techniques. In recent years, techniques based on deep recurrent neural networks have produced promising results for the modeling and simulation of complex spatiotemporal systems and offer large flexibility in model development as they can incorporate experimental and computational data. However, neural networks lack interpretability, which limits their utility and generalizability across complex systems. Here we propose a novel framework of Interpretable Learning Effective Dynamics (iLED) that offers comparable accuracy to state-of-the-art recurrent neural network-based approaches while providing the added benefit of interpretability. The iLED framework is motivated by Mori-Zwanzig and Koopman operator theory, which justifies the choice of the specific architecture. We demonstrate the effectiveness of the proposed framework in simulations of three benchmark multiscale systems. Our results show that the iLED framework can generate accurate predictions and obtain interpretable dynamics, making it a promising approach for solving high-dimensional multiscale systems.

Despite significant advances, the performance of state-of-the-art continual learning approaches hinges on the unrealistic scenario of fully labeled data. In this paper, we tackle this challenge and propose an approach for continual semi-supervised learning--a setting where not all the data samples are labeled. A primary issue in this scenario is the model forgetting representations of unlabeled data and overfitting the labeled samples. We leverage the power of nearest-neighbor classifiers to nonlinearly partition the feature space and flexibly model the underlying data distribution thanks to its non-parametric nature. This enables the model to learn a strong representation for the current task, and distill relevant information from previous tasks. We perform a thorough experimental evaluation and show that our method outperforms all the existing approaches by large margins, setting a solid state of the art on the continual semi-supervised learning paradigm. For example, on CIFAR-100 we surpass several others even when using at least 30 times less supervision (0.8% vs. 25% of annotations). Finally, our method works well on both low and high resolution images and scales seamlessly to more complex datasets such as ImageNet-100. The code is publicly available on //github.com/kangzhiq/NNCSL

With the increasing availability of large scale datasets, computational power and tools like automatic differentiation and expressive neural network architectures, sequential data are now often treated in a data-driven way, with a dynamical model trained from the observation data. While neural networks are often seen as uninterpretable black-box architectures, they can still benefit from physical priors on the data and from mathematical knowledge. In this paper, we use a neural network architecture which leverages the long-known Koopman operator theory to embed dynamical systems in latent spaces where their dynamics can be described linearly, enabling a number of appealing features. We introduce methods that enable to train such a model for long-term continuous reconstruction, even in difficult contexts where the data comes in irregularly-sampled time series. The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques, with applications to e.g. time series interpolation and forecasting.

We study the finite-time behaviour of the popular temporal difference (TD) learning algorithm when combined with tail-averaging. We derive finite time bounds on the parameter error of the tail-averaged TD iterate under a step-size choice that does not require information about the eigenvalues of the matrix underlying the projected TD fixed point. Our analysis shows that tail-averaged TD converges at the optimal $O\left(1/t\right)$ rate, both in expectation and with high probability. In addition, our bounds exhibit a sharper rate of decay for the initial error (bias), which is an improvement over averaging all iterates. We also propose and analyse a variant of TD that incorporates regularisation. From analysis, we conclude that the regularised version of TD is useful for problems with ill-conditioned features.

We study a subspace constrained version of the randomized Kaczmarz algorithm for solving large linear systems in which the iterates are confined to the space of solutions of a selected subsystem. We show that the subspace constraint leads to an accelerated convergence rate, especially when the system has structure such as having coherent rows or being approximately low-rank. On Gaussian-like random data, it results in a form of dimension reduction that effectively improves the aspect ratio of the system. Furthermore, this method serves as a building block for a second, quantile-based algorithm for the problem of solving linear systems with arbitrary sparse corruptions, which is able to efficiently exploit partial external knowledge about uncorrupted equations and achieve convergence in difficult settings such as in almost-square systems. Numerical experiments on synthetic and real-world data support our theoretical results and demonstrate the validity of the proposed methods for even more general data models than guaranteed by the theory.

We present a constant-factor approximation algorithm for the Nash social welfare maximization problem with subadditive valuations accessible via demand queries. More generally, we propose a template for NSW optimization by solving a configuration-type LP and using a rounding procedure for (utilitarian) social welfare as a blackbox, which could be applicable to other variants of the problem.

We develop a new policy gradient and actor-critic algorithm for solving mean-field control problems within a continuous time reinforcement learning setting. Our approach leverages a gradient-based representation of the value function, employing parametrized randomized policies. The learning for both the actor (policy) and critic (value function) is facilitated by a class of moment neural network functions on the Wasserstein space of probability measures, and the key feature is to sample directly trajectories of distributions. A central challenge addressed in this study pertains to the computational treatment of an operator specific to the mean-field framework. To illustrate the effectiveness of our methods, we provide a comprehensive set of numerical results. These encompass diverse examples, including multi-dimensional settings and nonlinear quadratic mean-field control problems with controlled volatility.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

北京阿比特科技有限公司