亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Two types of explanations have been receiving increased attention in the literature when analyzing the decisions made by classifiers. The first type explains why a decision was made and is known as a sufficient reason for the decision, also an abductive explanation or a PI-explanation. The second type explains why some other decision was not made and is known as a necessary reason for the decision, also a contrastive or counterfactual explanation. These explanations were defined for classifiers with binary, discrete and, in some cases, continuous features. We show that these explanations can be significantly improved in the presence of non-binary features, leading to a new class of explanations that relay more information about decisions and the underlying classifiers. Necessary and sufficient reasons were also shown to be the prime implicates and implicants of the complete reason for a decision, which can be obtained using a quantification operator. We show that our improved notions of necessary and sufficient reasons are also prime implicates and implicants but for an improved notion of complete reason obtained by a new quantification operator that we also define and study.

相關內容

Data races are a notorious problem in parallel programming. There has been great research interest in type systems that statically prevent data races. Despite the progress in the safety and usability of these systems, lots of existing approaches enforce strict anti-aliasing principles to prevent data races. The adoption of them is often intrusive, in the sense that it invalidates common programming patterns and requires paradigm shifts. We propose Capture Separation Calculus (System CSC), a calculus based on Capture Calculus (System CC<:box), that achieves static data race freedom while being non-intrusive. It allows aliasing in general to permit common programming patterns, but tracks aliasing and controls them when that is necessary to prevent data races. We study the formal properties of System CSC by establishing its type safety and data race freedom. Notably, we establish the data race freedom property by proving the confluence of its reduction semantics. To validate the usability of the calculus, we implement it as an extension to the Scala 3 compiler, and use it to type-check the examples in the paper.

Credibility signals represent a wide range of heuristics that are typically used by journalists and fact-checkers to assess the veracity of online content. Automating the task of credibility signal extraction, however, is very challenging as it requires high-accuracy signal-specific extractors to be trained, while there are currently no sufficiently large datasets annotated with all credibility signals. This paper investigates whether large language models (LLMs) can be prompted effectively with a set of 18 credibility signals to produce weak labels for each signal. We then aggregate these potentially noisy labels using weak supervision in order to predict content veracity. We demonstrate that our approach, which combines zero-shot LLM credibility signal labeling and weak supervision, outperforms state-of-the-art classifiers on two misinformation datasets without using any ground-truth labels for training. We also analyse the contribution of the individual credibility signals towards predicting content veracity, which provides new valuable insights into their role in misinformation detection.

In recent years, Transformer-based auto-attention mechanisms have been successfully applied to the analysis of a variety of context-reliant data types, from texts to images and beyond, including data from non-Euclidean geometries. In this paper, we present such a mechanism, designed to classify sequences of Symmetric Positive Definite matrices while preserving their Riemannian geometry throughout the analysis. We apply our method to automatic sleep staging on timeseries of EEG-derived covariance matrices from a standard dataset, obtaining high levels of stage-wise performance.

To plan the trajectories of a large and heterogeneous swarm, sequential or synchronous distributed methods usually become intractable, due to the lack of global connectivity and clock synchronization, Moreover, the existing asynchronously distributed schemes usually require recheck-like mechanisms instead of inherently considering the other' moving tendency. To this end, we propose a novel asynchronous protocol to allocate the agents' derivable space in a distributed way, by which each agent can replan trajectory depending on its own timetable. Properties such as collision avoidance and recursive feasibility are theoretically shown and a lower bound of protocol updating is provided. Comprehensive simulations and comparisons with five state-of-the-art methods validate the effectiveness of our method and illustrate the improvement in both the completion time and the moving distance. Finally, hardware experiments are carried out, where 8 heterogeneous unmanned ground vehicles with onboard computation navigate in cluttered scenarios at a high agility.

Several prior studies have suggested that word frequency biases can cause the Bert model to learn indistinguishable sentence embeddings. Contrastive learning schemes such as SimCSE and ConSERT have already been adopted successfully in unsupervised sentence embedding to improve the quality of embeddings by reducing this bias. However, these methods still introduce new biases such as sentence length bias and false negative sample bias, that hinders model's ability to learn more fine-grained semantics. In this paper, we reexamine the challenges of contrastive sentence embedding learning from a debiasing perspective and argue that effectively eliminating the influence of various biases is crucial for learning high-quality sentence embeddings. We think all those biases are introduced by simple rules for constructing training data in contrastive learning and the key for contrastive learning sentence embedding is to mimic the distribution of training data in supervised machine learning in unsupervised way. We propose a novel contrastive framework for sentence embedding, termed DebCSE, which can eliminate the impact of these biases by an inverse propensity weighted sampling method to select high-quality positive and negative pairs according to both the surface and semantic similarity between sentences. Extensive experiments on semantic textual similarity (STS) benchmarks reveal that DebCSE significantly outperforms the latest state-of-the-art models with an average Spearman's correlation coefficient of 80.33% on BERTbase.

In matched observational studies, the inferred causal conclusions pretending that matching has taken into account all confounding can be sensitive to unmeasured confounding. In such cases, a sensitivity analysis is often conducted, which investigates whether the observed association between treatment and outcome is due to effects caused by the treatment or it is due to hidden confounding. In general, a sensitivity analysis tries to infer the minimum amount of hidden biases needed in order to explain away the observed association between treatment and outcome, assuming that the treatment has no effect. If the needed bias is large, then the treatment is likely to have significant effects. The Rosenbaum sensitivity analysis is a modern approach for conducting sensitivity analysis for matched observational studies. It investigates what magnitude the maximum of the hidden biases from all matched sets needs to be in order to explain away the observed association, assuming that the treatment has no effect. However, such a sensitivity analysis can be overly conservative and pessimistic, especially when the investigators believe that some matched sets may have exceptionally large hidden biases. In this paper, we generalize Rosenbaum's framework to conduct sensitivity analysis on quantiles of hidden biases from all matched sets, which are more robust than the maximum. Moreover, we demonstrate that the proposed sensitivity analysis on all quantiles of hidden biases is simultaneously valid and is thus a free lunch added to the conventional sensitivity analysis. The proposed approach works for general outcomes, general matched studies and general test statistics. Finally, we demonstrate that the proposed sensitivity analysis also works for bounded null hypotheses as long as the test statistic satisfies certain properties. An R package implementing the proposed method is also available online.

Prior work has shown that the ordering in which concepts are shown to a commonsense generator plays an important role, affecting the quality of the generated sentence. However, it remains a challenge to determine the optimal ordering of a given set of concepts such that a natural sentence covering all the concepts could be generated from a pretrained generator. To understand the relationship between the ordering of the input concepts and the quality of the generated sentences, we conduct a systematic study considering multiple language models (LMs) and concept ordering strategies. We find that BART-large model consistently outperforms all other LMs considered in this study when fine-tuned using the ordering of concepts as they appear in CommonGen training data as measured using multiple evaluation metrics. Moreover, the larger GPT3-based large language models (LLMs) variants do not necessarily outperform much smaller LMs on this task, even when fine-tuned on task-specific training data. Interestingly, human annotators significantly reorder input concept sets when manually writing sentences covering those concepts, and this ordering provides the best sentence generations independently of the LM used for the generation, outperforming a probabilistic concept ordering baseline

With the exponentially scaled World Wide Web, the standard HTTP protocol has started showing its limitations. With the increased amount of data duplication & accidental deletion of files on the Internet, the P2P file system called IPFS completely changes the way files are stored. IPFS is a file storage protocol allowing files to be stored on decentralized systems. In the HTTP client-server protocol, files are downloaded from a single source. With files stored on a decentralized network, IPFS allows packet retrieval from multiple sources, simultaneously saving considerable bandwidth. IPFS uses a content-addressed block storage model with content-addressed hyperlinks. Large amounts of data is addressable with IPFS with the immutable and permanent IPFS links with meta-data stored as Blockchain transactions. This timestamps and secures the data, instead of having to put it on the chain itself. Our paper proposes a model that uses the decentralized file storage system of IPFS, and the integrity preservation properties of the Blockchain, to store and distribute data on the Web.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司