The coordination of autonomous vehicles is an open field that is addressed by different researches comprising many different techniques. In this paper we focus on decentralized approaches able to provide adaptability to different infrastructural and traffic conditions. We formalize an Emergent Behavior Approach that, as per our knowledge, has never been performed for this purpose, and a Decentralized Auction approach. We compare them against existing centralized negotiation approaches based on auctions and we determine under which conditions each approach is preferable to the others.
The field of 'explainable' artificial intelligence (XAI) has produced highly cited methods that seek to make the decisions of complex machine learning (ML) methods 'understandable' to humans, for example by attributing 'importance' scores to input features. Yet, a lack of formal underpinning leaves it unclear as to what conclusions can safely be drawn from the results of a given XAI method and has also so far hindered the theoretical verification and empirical validation of XAI methods. This means that challenging non-linear problems, typically solved by deep neural networks, presently lack appropriate remedies. Here, we craft benchmark datasets for three different non-linear classification scenarios, in which the important class-conditional features are known by design, serving as ground truth explanations. Using novel quantitative metrics, we benchmark the explanation performance of a wide set of XAI methods across three deep learning model architectures. We show that popular XAI methods are often unable to significantly outperform random performance baselines and edge detection methods. Moreover, we demonstrate that explanations derived from different model architectures can be vastly different; thus, prone to misinterpretation even under controlled conditions.
Current approaches to generic segmentation start by creating a hierarchy of nested image partitions and then specifying a segmentation from it. Our first contribution is to describe several ways, most of them new, for specifying segmentations using the hierarchy elements. Then, we consider the best hierarchy-induced segmentation specified by a limited number of hierarchy elements. We focus on a common quality measure for binary segmentations, the Jaccard index (also known as IoU). Optimizing the Jaccard index is highly non-trivial, and yet we propose an efficient approach for doing exactly that. This way we get algorithm-independent upper bounds on the quality of any segmentation created from the hierarchy. We found that the obtainable segmentation quality varies significantly depending on the way that the segments are specified by the hierarchy elements, and that representing a segmentation with only a few hierarchy elements is often possible. (Code is available).
The design of functional materials with desired properties is essential in driving technological advances in areas like energy storage, catalysis, and carbon capture. Generative models provide a new paradigm for materials design by directly generating entirely novel materials given desired property constraints. Despite recent progress, current generative models have low success rate in proposing stable crystals, or can only satisfy a very limited set of property constraints. Here, we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, we introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset. Compared to prior generative models, structures produced by MatterGen are more than twice as likely to be novel and stable, and more than 15 times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, novel materials with desired chemistry, symmetry, as well as mechanical, electronic and magnetic properties. Finally, we demonstrate multi-property materials design capabilities by proposing structures that have both high magnetic density and a chemical composition with low supply-chain risk. We believe that the quality of generated materials and the breadth of MatterGen's capabilities represent a major advancement towards creating a universal generative model for materials design.
Steepest descent methods combining complex contour deformation with numerical quadrature provide an efficient and accurate approach for the evaluation of highly oscillatory integrals. However, unless the phase function governing the oscillation is particularly simple, their application requires a significant amount of a priori analysis and expert user input, to determine the appropriate contour deformation, and to deal with the non-uniformity in the accuracy of standard quadrature techniques associated with the coalescence of stationary points (saddle points) with each other, or with the endpoints of the original integration contour. In this paper we present a novel algorithm for the numerical evaluation of oscillatory integrals with general polynomial phase functions, which automates the contour deformation process and avoids the difficulties typically encountered with coalescing stationary points and endpoints. The inputs to the algorithm are simply the phase and amplitude functions, the endpoints and orientation of the original integration contour, and a small number of numerical parameters. By a series of numerical experiments we demonstrate that the algorithm is accurate and efficient over a large range of frequencies, even for examples with a large number of coalescing stationary points and with endpoints at infinity. As a particular application, we use our algorithm to evaluate cuspoid canonical integrals from scattering theory. A Matlab implementation of the algorithm is made available and is called PathFinder.
A semi-implicit in time, entropy stable finite volume scheme for the compressible barotropic Euler system is designed and analyzed and its weak convergence to a dissipative measure-valued (DMV) solution [E. Feireisl et al., Dissipative measure-valued solutions to the compressible Navier-Stokes system, Calc. Var. Partial Differential Equations, 2016] of the Euler system is shown. The entropy stability is achieved by introducing a shifted velocity in the convective fluxes of the mass and momentum balances, provided some CFL-like condition is satisfied to ensure stability. A consistency analysis is performed in the spirit of the Lax's equivalence theorem under some physically reasonable boundedness assumptions. The concept of K-convergence [E. Feireisl et al., K-convergence as a new tool in numerical analysis, IMA J. Numer. Anal., 2020] is used in order to obtain some strong convergence results, which are then illustrated via rigorous numerical case studies. The convergence of the scheme to a DMV solution, a weak solution and a strong solution of the Euler system using the weak-strong uniqueness principle and relative entropy are presented.
Hesitant fuzzy sets are widely used in the instances of uncertainty and hesitation. The inclusion relationship is an important and foundational definition for sets. Hesitant fuzzy set, as a kind of set, needs explicit definition of inclusion relationship. Base on the hesitant fuzzy membership degree of discrete form, several kinds of inclusion relationships for hesitant fuzzy sets are proposed. And then some foundational propositions of hesitant fuzzy sets and the families of hesitant fuzzy sets are presented. Finally, some foundational propositions of hesitant fuzzy information systems with respect to parameter reductions are put forward, and an example and an algorithm are given to illustrate the processes of parameter reductions.
While many phenomena in physics and engineering are formally high-dimensional, their long-time dynamics often live on a lower-dimensional manifold. The present work introduces an autoencoder framework that combines implicit regularization with internal linear layers and $L_2$ regularization (weight decay) to automatically estimate the underlying dimensionality of a data set, produce an orthogonal manifold coordinate system, and provide the mapping functions between the ambient space and manifold space, allowing for out-of-sample projections. We validate our framework's ability to estimate the manifold dimension for a series of datasets from dynamical systems of varying complexities and compare to other state-of-the-art estimators. We analyze the training dynamics of the network to glean insight into the mechanism of low-rank learning and find that collectively each of the implicit regularizing layers compound the low-rank representation and even self-correct during training. Analysis of gradient descent dynamics for this architecture in the linear case reveals the role of the internal linear layers in leading to faster decay of a "collective weight variable" incorporating all layers, and the role of weight decay in breaking degeneracies and thus driving convergence along directions in which no decay would occur in its absence. We show that this framework can be naturally extended for applications of state-space modeling and forecasting by generating a data-driven dynamic model of a spatiotemporally chaotic partial differential equation using only the manifold coordinates. Finally, we demonstrate that our framework is robust to hyperparameter choices.
For safe and effective operation of humanoid robots in human-populated environments, the problem of commanding a large number of Degrees of Freedom (DoF) while simultaneously considering dynamic obstacles and human proximity has still not been solved. We present a new reactive motion controller that commands two arms of a humanoid robot and three torso joints (17 DoF in total). We formulate a quadratic program that seeks joint velocity commands respecting multiple constraints while minimizing the magnitude of the velocities. We introduce a new unified treatment of obstacles that dynamically maps visual and proximity (pre-collision) and tactile (post-collision) obstacles as additional constraints to the motion controller, in a distributed fashion over surface of the upper-body of the iCub robot (with 2000 pressure-sensitive receptors). The bio-inspired controller: (i) produces human-like minimum jerk movement profiles; (ii) gives rise to a robot with whole-body visuo-tactile awareness, resembling peripersonal space representations. The controller was extensively experimentally validated, including a physical human-robot interaction scenario.
Robust inferential methods based on divergences measures have shown an appealing trade-off between efficiency and robustness in many different statistical models. In this paper, minimum density power divergence estimators (MDPDEs) for the scale and shape parameters of the log-logistic distribution are considered. The log-logistic is a versatile distribution modeling lifetime data which is commonly adopted in survival analysis and reliability engineering studies when the hazard rate is initially increasing but then it decreases after some point. Further, it is shown that the classical estimators based on maximum likelihood (MLE) are included as a particular case of the MDPDE family. Moreover, the corresponding influence function of the MDPDE is obtained, and its boundlessness is proved, thus leading to robust estimators. A simulation study is carried out to illustrate the slight loss in efficiency of MDPDE with respect to MLE and, at besides, the considerable gain in robustness.
We note a fact that stiff systems or differential equations that have highly oscillatory solutions cannot be solved efficiently using conventional methods. In this paper, we study two new classes of exponential Runge-Kutta (ERK) integrators for efficiently solving stiff systems or highly oscillatory problems. We first present a novel class of explicit modified version of exponential Runge-Kutta (MVERK) methods based on the order conditions. Furthermore, we consider a class of explicit simplified version of exponential Runge-Kutta (SVERK) methods. Numerical results demonstrate the high efficiency of the explicit MVERK integrators and SVERK methods derived in this paper compared with the well-known explicit ERK integrators for stiff systems or highly oscillatory problems in the literature.