{mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this second paper we solve the twisted conjugacy problem for even dihedral Artin groups, that is, groups with presentation $G(m) = \langle a,b \mid {}_{m}(a,b) = {}_{m}(b,a) \rangle$, where $m \geq 2$ is even, and $_{m}(a,b)$ is the word $abab\dots$ of length $m$. Similar to odd dihedral Artin groups, we prove orbit decidability for all subgroups $A \leq \mathrm{Aut}(G(m))$, which then implies that the conjugacy problem is solvable in extensions of even dihedral Artin groups.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · TC · INFORMS · FOCS · RSA 加密 ·
2024 年 5 月 24 日

We prove the first hardness results against efficient proof search by quantum algorithms. We show that under Learning with Errors (LWE), the standard lattice-based cryptographic assumption, no quantum algorithm can weakly automate $\mathbf{TC}^0$-Frege. This extends the line of results of Kraj\'i\v{c}ek and Pudl\'ak (Information and Computation, 1998), Bonet, Pitassi, and Raz (FOCS, 1997), and Bonet, Domingo, Gavald\`a, Maciel, and Pitassi (Computational Complexity, 2004), who showed that Extended Frege, $\mathbf{TC}^0$-Frege and $\mathbf{AC}^0$-Frege, respectively, cannot be weakly automated by classical algorithms if either the RSA cryptosystem or the Diffie-Hellman key exchange protocol are secure. To the best of our knowledge, this is the first interaction between quantum computation and propositional proof search.

Boundary integral equation formulations of elliptic partial differential equations lead to dense system matrices when discretized, yet they are data-sparse. Using the $\mathcal{H}$-matrix format, this sparsity is exploited to achieve $\mathcal{O}(N\log N)$ complexity for storage and multiplication by a vector. This is achieved purely algebraically, based on low-rank approximations of subblocks, and hence the format is also applicable to a wider range of problems. The $\mathcal{H}^2$-matrix format improves the complexity to $\mathcal{O}(N)$ by introducing a recursive structure onto subblocks on multiple levels. However, in practice this comes with a large proportionality constant, making the $\mathcal{H}^2$-matrix format advantageous mostly for large problems. In this paper we investigate the usefulness of a matrix format that lies in between these two: Uniform $\mathcal{H}$-matrices. An algebraic compression algorithm is introduced to transform a regular $\mathcal{H}$-matrix into a uniform $\mathcal{H}$-matrix, which maintains the asymptotic complexity.

Vizing's theorem states that any $n$-vertex $m$-edge graph of maximum degree $\Delta$ can be {\em edge colored} using at most $\Delta + 1$ different colors [Diskret.~Analiz, '64]. Vizing's original proof is algorithmic and shows that such an edge coloring can be found in $\tilde{O}(mn)$ time. This was subsequently improved to $\tilde O(m\sqrt{n})$, independently by Arjomandi [1982] and by Gabow et al.~[1985]. In this paper we present an algorithm that computes such an edge coloring in $\tilde O(mn^{1/3})$ time, giving the first polynomial improvement for this fundamental problem in over 40 years.

In this paper, we propose a weak Galerkin finite element method (WG) for solving singularly perturbed convection-diffusion problems on a Bakhvalov-type mesh in 2D. Our method is flexible and allows the use of discontinuous approximation functions on the meshe. An error estimate is devised in a suitable norm and the optimal convergence order is obtained. Finally, numerical experiments are given to support the theory and to show the efficiency of the proposed method.

In this work we present a consistent reduction of the relaxed micromorphic model to its corresponding two-dimensional planar model, such that its capacity to capture discontinuous dilatation fields is preserved. As a direct consequence of our approach, new conforming finite elements for $H^\mathrm{dev}(\mathrm{Curl},A)$ become necessary. We present two novel $H^\mathrm{dev}(\mathrm{Curl},A)$-conforming finite element spaces, of which one is a macro element based on Clough--Tocher splits, as well as primal and mixed variational formulations of the planar relaxed micromorphic model. Finally, we demonstrate the effectiveness of our approach with two numerical examples.

In this paper, we propose Wasserstein proximals of $\alpha$-divergences as suitable objective functionals for learning heavy-tailed distributions in a stable manner. First, we provide sufficient, and in some cases necessary, relations among data dimension, $\alpha$, and the decay rate of data distributions for the Wasserstein-proximal-regularized divergence to be finite. Finite-sample convergence rates for the estimation in the case of the Wasserstein-1 proximal divergences are then provided under certain tail conditions. Numerical experiments demonstrate stable learning of heavy-tailed distributions -- even those without first or second moment -- without any explicit knowledge of the tail behavior, using suitable generative models such as GANs and flow-based models related to our proposed Wasserstein-proximal-regularized $\alpha$-divergences. Heuristically, $\alpha$-divergences handle the heavy tails and Wasserstein proximals allow non-absolute continuity between distributions and control the velocities of flow-based algorithms as they learn the target distribution deep into the tails.

An expression is any mathematical formula that contains certain formal variables and operations to be executed in a specified order. In computer science, it is usually convenient to represent each expression in the form of an expression tree. Here, we consider only arithmetic expressions, i.e., those that contain only the four standard arithmetic operations: addition, subtraction, multiplication and division, alongside additive inversion. We first provide certain theoretical results concerning the equivalence of such expressions and then disclose a $\Theta(n^2)$ algorithm that computes the number of inequivalent arithmetic expressions on $n$ distinct variables.

In this paper we analyze a conforming virtual element method to approximate the eigenfunctions and eigenvalues of the two dimensional Oseen eigenvalue problem. We consider the classic velocity-pressure formulation which allows us to consider the divergence-conforming virtual element spaces employed for the Stokes equations. Under standard assumptions on the meshes we derive a priori error estimates for the proposed method with the aid of the compact operators theory. We report some numerical tests to confirm the theoretical results.

The classical work of (Arora et al., 1999) provides a scheme that gives, for any $\epsilon>0$, a polynomial time $1-\epsilon$ approximation algorithm for dense instances of a family of $\mathcal{NP}$-hard problems, such as Max-CUT and Max-$k$-SAT. In this paper we extend and speed up this scheme using a logarithmic number of one-bit predictions. We propose a learning augmented framework which aims at finding fast algorithms which guarantees approximation consistency, smoothness and robustness with respect to the prediction error. We provide such algorithms, which moreover use predictions parsimoniously, for dense instances of various optimization problems.

We propose a new approach to discretize the von Neumann equation, which is efficient in the semi-classical limit. This method is first based on the so called Weyl's variables to address the stiffness associated with the equation. Then, by applying a truncated Hermite expansion of the density operator, we successfully handle this stiffness. Additionally, we develop a finite volume approximation for practical implementation and conduct numerical simulations to illustrate the efficiency of our approach. This asymptotic preserving numerical approximation, combined with the use of Hermite polynomials, provides an efficient tool for solving the von Neumann equation in all regimes, near classical or not.

北京阿比特科技有限公司
{m}(a,b)$ is the word $abab\dots$ of length $m$. Similar to odd dihedral Artin groups, we prove orbit decidability for all subgroups $A \leq \mathrm{Aut}(G(m))$, which then implies that the conjugacy problem is solvable in extensions of even dihedral Artin groups. ">

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this second paper we solve the twisted conjugacy problem for even dihedral Artin groups, that is, groups with presentation $G(m) = \langle a,b \mid {}_{m}(a,b) = {}_{m}(b,a) \rangle$, where $m \geq 2$ is even, and $_{m}(a,b)$ is the word $abab\dots$ of length $m$. Similar to odd dihedral Artin groups, we prove orbit decidability for all subgroups $A \leq \mathrm{Aut}(G(m))$, which then implies that the conjugacy problem is solvable in extensions of even dihedral Artin groups.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · TC · INFORMS · FOCS · RSA 加密 ·
2024 年 5 月 24 日

We prove the first hardness results against efficient proof search by quantum algorithms. We show that under Learning with Errors (LWE), the standard lattice-based cryptographic assumption, no quantum algorithm can weakly automate $\mathbf{TC}^0$-Frege. This extends the line of results of Kraj\'i\v{c}ek and Pudl\'ak (Information and Computation, 1998), Bonet, Pitassi, and Raz (FOCS, 1997), and Bonet, Domingo, Gavald\`a, Maciel, and Pitassi (Computational Complexity, 2004), who showed that Extended Frege, $\mathbf{TC}^0$-Frege and $\mathbf{AC}^0$-Frege, respectively, cannot be weakly automated by classical algorithms if either the RSA cryptosystem or the Diffie-Hellman key exchange protocol are secure. To the best of our knowledge, this is the first interaction between quantum computation and propositional proof search.

Boundary integral equation formulations of elliptic partial differential equations lead to dense system matrices when discretized, yet they are data-sparse. Using the $\mathcal{H}$-matrix format, this sparsity is exploited to achieve $\mathcal{O}(N\log N)$ complexity for storage and multiplication by a vector. This is achieved purely algebraically, based on low-rank approximations of subblocks, and hence the format is also applicable to a wider range of problems. The $\mathcal{H}^2$-matrix format improves the complexity to $\mathcal{O}(N)$ by introducing a recursive structure onto subblocks on multiple levels. However, in practice this comes with a large proportionality constant, making the $\mathcal{H}^2$-matrix format advantageous mostly for large problems. In this paper we investigate the usefulness of a matrix format that lies in between these two: Uniform $\mathcal{H}$-matrices. An algebraic compression algorithm is introduced to transform a regular $\mathcal{H}$-matrix into a uniform $\mathcal{H}$-matrix, which maintains the asymptotic complexity.

Vizing's theorem states that any $n$-vertex $m$-edge graph of maximum degree $\Delta$ can be {\em edge colored} using at most $\Delta + 1$ different colors [Diskret.~Analiz, '64]. Vizing's original proof is algorithmic and shows that such an edge coloring can be found in $\tilde{O}(mn)$ time. This was subsequently improved to $\tilde O(m\sqrt{n})$, independently by Arjomandi [1982] and by Gabow et al.~[1985]. In this paper we present an algorithm that computes such an edge coloring in $\tilde O(mn^{1/3})$ time, giving the first polynomial improvement for this fundamental problem in over 40 years.

In this paper, we propose a weak Galerkin finite element method (WG) for solving singularly perturbed convection-diffusion problems on a Bakhvalov-type mesh in 2D. Our method is flexible and allows the use of discontinuous approximation functions on the meshe. An error estimate is devised in a suitable norm and the optimal convergence order is obtained. Finally, numerical experiments are given to support the theory and to show the efficiency of the proposed method.

In this work we present a consistent reduction of the relaxed micromorphic model to its corresponding two-dimensional planar model, such that its capacity to capture discontinuous dilatation fields is preserved. As a direct consequence of our approach, new conforming finite elements for $H^\mathrm{dev}(\mathrm{Curl},A)$ become necessary. We present two novel $H^\mathrm{dev}(\mathrm{Curl},A)$-conforming finite element spaces, of which one is a macro element based on Clough--Tocher splits, as well as primal and mixed variational formulations of the planar relaxed micromorphic model. Finally, we demonstrate the effectiveness of our approach with two numerical examples.

In this paper, we propose Wasserstein proximals of $\alpha$-divergences as suitable objective functionals for learning heavy-tailed distributions in a stable manner. First, we provide sufficient, and in some cases necessary, relations among data dimension, $\alpha$, and the decay rate of data distributions for the Wasserstein-proximal-regularized divergence to be finite. Finite-sample convergence rates for the estimation in the case of the Wasserstein-1 proximal divergences are then provided under certain tail conditions. Numerical experiments demonstrate stable learning of heavy-tailed distributions -- even those without first or second moment -- without any explicit knowledge of the tail behavior, using suitable generative models such as GANs and flow-based models related to our proposed Wasserstein-proximal-regularized $\alpha$-divergences. Heuristically, $\alpha$-divergences handle the heavy tails and Wasserstein proximals allow non-absolute continuity between distributions and control the velocities of flow-based algorithms as they learn the target distribution deep into the tails.

An expression is any mathematical formula that contains certain formal variables and operations to be executed in a specified order. In computer science, it is usually convenient to represent each expression in the form of an expression tree. Here, we consider only arithmetic expressions, i.e., those that contain only the four standard arithmetic operations: addition, subtraction, multiplication and division, alongside additive inversion. We first provide certain theoretical results concerning the equivalence of such expressions and then disclose a $\Theta(n^2)$ algorithm that computes the number of inequivalent arithmetic expressions on $n$ distinct variables.

In this paper we analyze a conforming virtual element method to approximate the eigenfunctions and eigenvalues of the two dimensional Oseen eigenvalue problem. We consider the classic velocity-pressure formulation which allows us to consider the divergence-conforming virtual element spaces employed for the Stokes equations. Under standard assumptions on the meshes we derive a priori error estimates for the proposed method with the aid of the compact operators theory. We report some numerical tests to confirm the theoretical results.

The classical work of (Arora et al., 1999) provides a scheme that gives, for any $\epsilon>0$, a polynomial time $1-\epsilon$ approximation algorithm for dense instances of a family of $\mathcal{NP}$-hard problems, such as Max-CUT and Max-$k$-SAT. In this paper we extend and speed up this scheme using a logarithmic number of one-bit predictions. We propose a learning augmented framework which aims at finding fast algorithms which guarantees approximation consistency, smoothness and robustness with respect to the prediction error. We provide such algorithms, which moreover use predictions parsimoniously, for dense instances of various optimization problems.

We propose a new approach to discretize the von Neumann equation, which is efficient in the semi-classical limit. This method is first based on the so called Weyl's variables to address the stiffness associated with the equation. Then, by applying a truncated Hermite expansion of the density operator, we successfully handle this stiffness. Additionally, we develop a finite volume approximation for practical implementation and conduct numerical simulations to illustrate the efficiency of our approach. This asymptotic preserving numerical approximation, combined with the use of Hermite polynomials, provides an efficient tool for solving the von Neumann equation in all regimes, near classical or not.

北京阿比特科技有限公司