Private Information Retrieval (PIR) schemes allow a client to retrieve any file of interest, while hiding the file identity from the database servers. In contrast to most existing PIR schemes that assume honest-but-curious servers, we study the case of dishonest servers. The latter provide incorrect answers and try to persuade the client to output the wrong result. We introduce several PIR schemes with information-theoretic privacy and result verification for the case of two servers. Security guarantees can be information-theoretical or computational, and the verification keys can be public or private. In this work, our main performance metric is the download rate.
Palmprint as biometrics has gained increasing attention recently due to its discriminative ability and robustness. However, existing methods mainly improve palmprint verification within one spectrum, which is challenging to verify across different spectrums. Additionally, in distributed server-client-based deployment, palmprint verification systems predominantly necessitate clients to transmit private data for model training on the centralized server, thereby engendering privacy apprehensions. To alleviate the above issues, in this paper, we propose a physics-driven spectrum-consistent federated learning method for palmprint verification, dubbed as PSFed-Palm. PSFed-Palm draws upon the inherent physical properties of distinct wavelength spectrums, wherein images acquired under similar wavelengths display heightened resemblances. Our approach first partitions clients into short- and long-spectrum groups according to the wavelength range of their local spectrum images. Subsequently, we introduce anchor models for short- and long-spectrum, which constrain the optimization directions of local models associated with long- and short-spectrum images. Specifically, a spectrum-consistent loss that enforces the model parameters and feature representation to align with their corresponding anchor models is designed. Finally, we impose constraints on the local models to ensure their consistency with the global model, effectively preventing model drift. This measure guarantees spectrum consistency while protecting data privacy, as there is no need to share local data. Extensive experiments are conducted to validate the efficacy of our proposed PSFed-Palm approach. The proposed PSFed-Palm demonstrates compelling performance despite only a limited number of training data. The codes will be released at //github.com/Zi-YuanYang/PSFed-Palm.
The 2-opt heuristic is a very simple local search heuristic for the traveling salesperson problem. In practice it usually converges quickly to solutions within a few percentages of optimality. In contrast to this, its running-time is exponential and its approximation performance is poor in the worst case. Englert, R\"oglin, and V\"ocking (Algorithmica, 2014) provided a smoothed analysis in the so-called one-step model in order to explain the performance of 2-opt on d-dimensional Euclidean instances, both in terms of running-time and in terms of approximation ratio. However, translating their results to the classical model of smoothed analysis, where points are perturbed by Gaussian distributions with standard deviation sigma, yields only weak bounds. We prove bounds that are polynomial in n and 1/sigma for the smoothed running-time with Gaussian perturbations. In addition, our analysis for Euclidean distances is much simpler than the existing smoothed analysis. Furthermore, we prove a smoothed approximation ratio of O(log(1/sigma)). This bound is almost tight, as we also provide a lower bound of Omega(log n/ loglog n) for sigma = O(1/sqrt n). Our main technical novelty here is that, different from existing smoothed analyses, we do not separately analyze objective values of the global and local optimum on all inputs (which only allows for a bound of O(1/sigma)), but simultaneously bound them on the same input.
Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in $L^2$. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in $L^2$ can be upper bounded by best $n$-term trigonometric widths in $L^\infty$. We describe a recovery procedure from $m$ function values based on $\ell^1$-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of $m^{-1/2}$ (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to $S^r_pW(\mathbb{T}^d)$ on the $d$-torus with a logarithmically better rate of convergence than any linear method can achieve when $1 < p < 2$ and $d$ is large. This effect is not present for isotropic Sobolev spaces.
The emerging theory of graph limits exhibits an analytic perspective on graphs, showing that many important concepts and tools in graph theory and its applications can be described more naturally (and sometimes proved more easily) in analytic language. We extend the theory of graph limits to the ordered setting, presenting a limit object for dense vertex-ordered graphs, which we call an orderon. As a special case, this yields limit objects for matrices whose rows and columns are ordered, and for dynamic graphs that expand (via vertex insertions) over time. Along the way, we devise an ordered locality-preserving variant of the cut distance between ordered graphs, showing that two graphs are close with respect to this distance if and only if they are similar in terms of their ordered subgraph frequencies. We show that the space of orderons is compact with respect to this distance notion, which is key to a successful analysis of combinatorial objects through their limits. We derive several applications of the ordered limit theory in extremal combinatorics, sampling, and property testing in ordered graphs. In particular, we prove a new ordered analogue of the well-known result by Alon and Stav [RS\&A'08] on the furthest graph from a hereditary property; this is the first known result of this type in the ordered setting. Unlike the unordered regime, here the random graph model $G(n, p)$ with an ordering over the vertices is not always asymptotically the furthest from the property for some $p$. However, using our ordered limit theory, we show that random graphs generated by a stochastic block model, where the blocks are consecutive in the vertex ordering, are (approximately) the furthest. Additionally, we describe an alternative analytic proof of the ordered graph removal lemma [Alon et al., FOCS'17].
Deep generative models, which target reproducing the given data distribution to produce novel samples, have made unprecedented advancements in recent years. Their technical breakthroughs have enabled unparalleled quality in the synthesis of visual content. However, one critical prerequisite for their tremendous success is the availability of a sufficient number of training samples, which requires massive computation resources. When trained on limited data, generative models tend to suffer from severe performance deterioration due to overfitting and memorization. Accordingly, researchers have devoted considerable attention to develop novel models that are capable of generating plausible and diverse images from limited training data recently. Despite numerous efforts to enhance training stability and synthesis quality in the limited data scenarios, there is a lack of a systematic survey that provides 1) a clear problem definition, critical challenges, and taxonomy of various tasks; 2) an in-depth analysis on the pros, cons, and remain limitations of existing literature; as well as 3) a thorough discussion on the potential applications and future directions in the field of image synthesis under limited data. In order to fill this gap and provide a informative introduction to researchers who are new to this topic, this survey offers a comprehensive review and a novel taxonomy on the development of image synthesis under limited data. In particular, it covers the problem definition, requirements, main solutions, popular benchmarks, and remain challenges in a comprehensive and all-around manner.
The Trusted Platform Module (TPM) is a cryptoprocessor designed to protect integrity and security of modern computers. Communications with the TPM go through the TPM Software Stack (TSS), a popular implementation of which is the open-source library tpm2-tss. Vulnerabilities in its code could allow attackers to recover sensitive information and take control of the system. This paper describes a case study on formal verification of tpm2-tss using the Frama-C verification platform. Heavily based on linked lists and complex data structures, the library code appears to be highly challenging for the verification tool. We present several issues and limitations we faced, illustrate them with examples and present solutions that allowed us to verify functional properties and the absence of runtime errors for a representative subset of functions. We describe verification results and desired tool improvements necessary to achieve a full formal verification of the target code.
Retrieval approaches that score documents based on learned dense vectors (i.e., dense retrieval) rather than lexical signals (i.e., conventional retrieval) are increasingly popular. Their ability to identify related documents that do not necessarily contain the same terms as those appearing in the user's query (thereby improving recall) is one of their key advantages. However, to actually achieve these gains, dense retrieval approaches typically require an exhaustive search over the document collection, making them considerably more expensive at query-time than conventional lexical approaches. Several techniques aim to reduce this computational overhead by approximating the results of a full dense retriever. Although these approaches reasonably approximate the top results, they suffer in terms of recall -- one of the key advantages of dense retrieval. We introduce 'LADR' (Lexically-Accelerated Dense Retrieval), a simple-yet-effective approach that improves the efficiency of existing dense retrieval models without compromising on retrieval effectiveness. LADR uses lexical retrieval techniques to seed a dense retrieval exploration that uses a document proximity graph. We explore two variants of LADR: a proactive approach that expands the search space to the neighbors of all seed documents, and an adaptive approach that selectively searches the documents with the highest estimated relevance in an iterative fashion. Through extensive experiments across a variety of dense retrieval models, we find that LADR establishes a new dense retrieval effectiveness-efficiency Pareto frontier among approximate k nearest neighbor techniques. Further, we find that when tuned to take around 8ms per query in retrieval latency on our hardware, LADR consistently achieves both precision and recall that are on par with an exhaustive search on standard benchmarks.
Online social media is rife with offensive and hateful comments, prompting the need for their automatic detection given the sheer amount of posts created every second. Creating high-quality human-labelled datasets for this task is difficult and costly, especially because non-offensive posts are significantly more frequent than offensive ones. However, unlabelled data is abundant, easier, and cheaper to obtain. In this scenario, self-training methods, using weakly-labelled examples to increase the amount of training data, can be employed. Recent "noisy" self-training approaches incorporate data augmentation techniques to ensure prediction consistency and increase robustness against noisy data and adversarial attacks. In this paper, we experiment with default and noisy self-training using three different textual data augmentation techniques across five different pre-trained BERT architectures varying in size. We evaluate our experiments on two offensive/hate-speech datasets and demonstrate that (i) self-training consistently improves performance regardless of model size, resulting in up to +1.5% F1-macro on both datasets, and (ii) noisy self-training with textual data augmentations, despite being successfully applied in similar settings, decreases performance on offensive and hate-speech domains when compared to the default method, even with state-of-the-art augmentations such as backtranslation.
Motivated by a practical scenario in blockchains in which a client, who possesses a transaction, wishes to privately verify that the transaction actually belongs to a block, we investigate the problem of private retrieval of Merkle proofs (i.e. proofs of inclusion/membership) in a Merkle tree. In this setting, one or more servers store the nodes of a binary tree (a Merkle tree), while a client wants to retrieve the set of nodes along a root-to-leaf path (i.e. a Merkle proof, after appropriate node swapping operations), without letting the servers know which path is being retrieved. We propose a method that partitions the Merkle tree to enable parallel private retrieval of the Merkle proofs. The partitioning step is based on a novel tree coloring called ancestral coloring in which nodes that have ancestor-descendant relationship must have distinct colors. To minimize the retrieval time, the coloring is required to be balanced, i.e. the sizes of the color classes differ by at most one. We develop a fast algorithm to find a balanced (in fact, any) ancestral coloring in almost linear time in the number of tree nodes, which can handle trees with billions of nodes in a few minutes. Our partitioning method can be applied on top of any private information retrieval scheme, leading to the minimum storage overhead and fastest running times compared to existing approaches.
Motivated by the wide range of modern applications of the Erlang-B blocking model beyond communication networks and call centers to sizing and pricing in design production systems, messaging systems, and app-based parking systems, we study admission control for such a system but with unknown arrival and service rates. In our model, at every job arrival, a dispatcher decides to assign the job to an available server or block it. Every served job yields a fixed reward for the dispatcher, but it also results in a cost per unit time of service. Our goal is to design a dispatching policy that maximizes the long-term average reward for the dispatcher based on observing only the arrival times and the state of the system at each arrival that reflects a realistic sampling of such systems. Critically, the dispatcher observes neither the service times nor departure times so that standard reinforcement learning-based approaches that use reward signals do not apply. Hence, we develop our learning-based dispatch scheme as a parametric learning problem a'la self-tuning adaptive control. In our problem, certainty equivalent control switches between an always admit if room policy (explore infinitely often) and a never admit policy (immediately terminate learning), which is distinct from the adaptive control literature. Hence, our learning scheme judiciously uses the always admit if room policy so that learning doesn't stall. We prove that for all service rates, the proposed policy asymptotically learns to take the optimal action and present finite-time regret guarantees. The extreme contrast in the certainty equivalent optimal control policies leads to difficulties in learning that show up in our regret bounds for different parameter regimes: constant regret in one regime versus regret growing logarithmically in the other.