亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Online social media is rife with offensive and hateful comments, prompting the need for their automatic detection given the sheer amount of posts created every second. Creating high-quality human-labelled datasets for this task is difficult and costly, especially because non-offensive posts are significantly more frequent than offensive ones. However, unlabelled data is abundant, easier, and cheaper to obtain. In this scenario, self-training methods, using weakly-labelled examples to increase the amount of training data, can be employed. Recent "noisy" self-training approaches incorporate data augmentation techniques to ensure prediction consistency and increase robustness against noisy data and adversarial attacks. In this paper, we experiment with default and noisy self-training using three different textual data augmentation techniques across five different pre-trained BERT architectures varying in size. We evaluate our experiments on two offensive/hate-speech datasets and demonstrate that (i) self-training consistently improves performance regardless of model size, resulting in up to +1.5% F1-macro on both datasets, and (ii) noisy self-training with textual data augmentations, despite being successfully applied in similar settings, decreases performance on offensive and hate-speech domains when compared to the default method, even with state-of-the-art augmentations such as backtranslation.

相關內容

數據增強在機器學習領域多指采用一些方法(比如數據蒸餾,正負樣本均衡等)來提高模型數據集的質量,增強數據。

Predicting the success of Conversational Task Assistants (CTA) can be critical to understand user behavior and act accordingly. In this paper, we propose TB-Rater, a Transformer model which combines conversational-flow features with user behavior features for predicting user ratings in a CTA scenario. In particular, we use real human-agent conversations and ratings collected in the Alexa TaskBot challenge, a novel multimodal and multi-turn conversational context. Our results show the advantages of modeling both the conversational-flow and behavioral aspects of the conversation in a single model for offline rating prediction. Additionally, an analysis of the CTA-specific behavioral features brings insights into this setting and can be used to bootstrap future systems.

Analog computing has reemerged as a promising avenue for accelerating deep neural networks (DNNs) due to its potential to overcome the energy efficiency and scalability challenges posed by traditional digital architectures. However, achieving high precision and DNN accuracy using such technologies is challenging, as high-precision data converters are costly and impractical. In this paper, we address this challenge by using the residue number system (RNS). RNS allows composing high-precision operations from multiple low-precision operations, thereby eliminating the information loss caused by the limited precision of the data converters. Our study demonstrates that analog accelerators utilizing the RNS-based approach can achieve ${\geq}99\%$ of FP32 accuracy for state-of-the-art DNN inference using data converters with only $6$-bit precision whereas a conventional analog core requires more than $8$-bit precision to achieve the same accuracy in the same DNNs. The reduced precision requirements imply that using RNS can reduce the energy consumption of analog accelerators by several orders of magnitude while maintaining the same throughput and precision. Our study extends this approach to DNN training, where we can efficiently train DNNs using $7$-bit integer arithmetic while achieving accuracy comparable to FP32 precision. Lastly, we present a fault-tolerant dataflow using redundant RNS error-correcting codes to protect the computation against noise and errors inherent within an analog accelerator.

As Deepfake contents continue to proliferate on the internet, advancing face manipulation forensics has become a pressing issue. To combat this emerging threat, previous methods mainly focus on studying how to distinguish authentic and manipulated face images. Despite impressive, image-level classification lacks explainability and is limited to some specific application scenarios. Existing forgery localization methods suffer from imprecise and inconsistent pixel-level annotations. To alleviate these problems, this paper first re-constructs the FaceForensics++ dataset by introducing pixel-level annotations, then builds an extensive benchmark for localizing tampered regions. Next, a novel Multi-Spectral Class Center Network (MSCCNet) is proposed for face manipulation detection and localization. Specifically, inspired by the power of frequency-related forgery traces, we design Multi-Spectral Class Center (MSCC) module to learn more generalizable and semantic-agnostic features. Based on the features of different frequency bands, the MSCC module collects multispectral class centers and computes pixel-to-class relations. Applying multi-spectral class-level representations suppresses the semantic information of the visual concepts, which is insensitive to manipulations. Furthermore, we propose a Multi-level Features Aggregation (MFA) module to employ more low-level forgery artifacts and structure textures. Experimental results quantitatively and qualitatively indicate the effectiveness and superiority of the proposed MSCCNet on comprehensive localization benchmarks. We expect this work to inspire more studies on pixel-level face manipulation localization. The annotations and codes are available.

Compelling writing is tailored to its audience. This is challenging, as writers may struggle to empathize with readers, get feedback in time, or gain access to the target group. We propose a concept that generates on-demand feedback, based on writer-defined AI personas of any target audience. We explore this concept with a prototype (using GPT-3.5) in two user studies (N=5 and N=11): Writers appreciated the concept and strategically used personas for getting different perspectives. The feedback was seen as helpful and inspired revisions of text and personas, although it was often verbose and unspecific. We discuss the impact of on-demand feedback, the limited representativity of contemporary AI systems, and further ideas for defining AI personas. This work contributes to the vision of supporting writers with AI by expanding the socio-technical perspective in AI tool design: To empower creators, we also need to keep in mind their relationship to an audience.

The heterogeneous computing paradigm has led to the need for portable and efficient programming solutions that can leverage the capabilities of various hardware devices, such as NVIDIA, Intel, and AMD GPUs. This study evaluates the portability and performance of the SYCL and CUDA languages for one fundamental bioinformatics application (Smith-Waterman protein database search) across different GPU architectures, considering single and multi-GPU configurations from different vendors. The experimental work showed that, while both CUDA and SYCL versions achieve similar performance on NVIDIA devices, the latter demonstrated remarkable code portability to other GPU architectures, such as AMD and Intel. Furthermore, the architectural efficiency rates achieved on these devices were superior in 3 of the 4 cases tested. This brief study highlights the potential of SYCL as a viable solution for achieving both performance and portability in the heterogeneous computing ecosystem.

In modern commercial search engines and recommendation systems, data from multiple domains is available to jointly train the multi-domain model. Traditional methods train multi-domain models in the multi-task setting, with shared parameters to learn the similarity of multiple tasks, and task-specific parameters to learn the divergence of features, labels, and sample distributions of individual tasks. With the development of large language models, LLM can extract global domain-invariant text features that serve both search and recommendation tasks. We propose a novel framework called S\&R Multi-Domain Foundation, which uses LLM to extract domain invariant features, and Aspect Gating Fusion to merge the ID feature, domain invariant text features and task-specific heterogeneous sparse features to obtain the representations of query and item. Additionally, samples from multiple search and recommendation scenarios are trained jointly with Domain Adaptive Multi-Task module to obtain the multi-domain foundation model. We apply the S\&R Multi-Domain foundation model to cold start scenarios in the pretrain-finetune manner, which achieves better performance than other SOTA transfer learning methods. The S\&R Multi-Domain Foundation model has been successfully deployed in Alipay Mobile Application's online services, such as content query recommendation and service card recommendation, etc.

In text documents such as news articles, the content and key events usually revolve around a subset of all the entities mentioned in a document. These entities, often deemed as salient entities, provide useful cues of the aboutness of a document to a reader. Identifying the salience of entities was found helpful in several downstream applications such as search, ranking, and entity-centric summarization, among others. Prior work on salient entity detection mainly focused on machine learning models that require heavy feature engineering. We show that fine-tuning medium-sized language models with a cross-encoder style architecture yields substantial performance gains over feature engineering approaches. To this end, we conduct a comprehensive benchmarking of four publicly available datasets using models representative of the medium-sized pre-trained language model family. Additionally, we show that zero-shot prompting of instruction-tuned language models yields inferior results, indicating the task's uniqueness and complexity.

Due to intelligent, adaptive nature towards various operations and their ability to provide maximum comfort to the occupants residing in them, smart buildings are becoming a pioneering area of research. Since these architectures leverage the Internet of Things (IoT), there is a need for monitoring different operations (Occupancy, Humidity, Temperature, CO2, etc.) to provide sustainable comfort to the occupants. This paper proposes a novel approach for intelligent building operations monitoring using rule-based complex event processing and query-based approaches for dynamically monitoring the different operations. Siddhi is a complex event processing engine designed for handling multiple sources of event data in real time and processing it according to predefined rules using a decision tree. Since streaming data is dynamic in nature, to keep track of different operations, we have converted the IoT data into an RDF dataset. The RDF dataset is ingested to Apache Kafka for streaming purposes and for stored data we have used the GraphDB tool that extracts information with the help of SPARQL query. Consequently, the proposed approach is also evaluated by deploying the large number of events through the Siddhi CEP engine and how efficiently they are processed in terms of time. Apart from that, a risk estimation scenario is also designed to generate alerts for end users in case any of the smart building operations need immediate attention. The output is visualized and monitored for the end user through a tableau dashboard.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

北京阿比特科技有限公司