Similarity search is one of the most fundamental computations that are regularly performed on ever-increasing protein datasets. Scalability is of paramount importance for uncovering novel phenomena that occur at very large scales. We unleash the power of over 20,000 GPUs on the Summit system to perform all-vs-all protein similarity search on one of the largest publicly available datasets with 405 million proteins, in less than 3.5 hours, cutting the time-to-solution for many use cases from weeks. The variability of protein sequence lengths, as well as the sparsity of the space of pairwise comparisons, make this a challenging problem in distributed memory. Due to the need to construct and maintain a data structure holding indices to all other sequences, this application has a huge memory footprint that makes it hard to scale the problem sizes. We overcome this memory limitation by innovative matrix-based blocking techniques, without introducing additional load imbalance.
This research conducts an investigation on the effect of visually similar images within a publicly available diabetic foot ulcer dataset when training deep learning classification networks. The presence of binary-identical duplicate images in datasets used to train deep learning algorithms is a well known issue that can introduce unwanted bias which can degrade network performance. However, the effect of visually similar non-identical images is an under-researched topic, and has so far not been investigated in any diabetic foot ulcer studies. We use an open-source fuzzy algorithm to identify groups of increasingly similar images in the Diabetic Foot Ulcers Challenge 2021 (DFUC2021) training dataset. Based on each similarity threshold, we create new training sets that we use to train a range of deep learning multi-class classifiers. We then evaluate the performance of the best performing model on the DFUC2021 test set. Our findings show that the model trained on the training set with the 80\% similarity threshold images removed achieved the best performance using the InceptionResNetV2 network. This model showed improvements in F1-score, precision, and recall of 0.023, 0.029, and 0.013, respectively. These results indicate that highly similar images can contribute towards the presence of performance degrading bias within the Diabetic Foot Ulcers Challenge 2021 dataset, and that the removal of images that are 80\% similar from the training set can help to boost classification performance.
The MS MARCO-passage dataset has been the main large-scale dataset open to the IR community and it has fostered successfully the development of novel neural retrieval models over the years. But, it turns out that two different corpora of MS MARCO are used in the literature, the official one and a second one where passages were augmented with titles, mostly due to the introduction of the Tevatron code base. However, the addition of titles actually leaks relevance information, while breaking the original guidelines of the MS MARCO-passage dataset. In this work, we investigate the differences between the two corpora and demonstrate empirically that they make a significant difference when evaluating a new method. In other words, we show that if a paper does not properly report which version is used, reproducing fairly its results is basically impossible. Furthermore, given the current status of reviewing, where monitoring state-of-the-art results is of great importance, having two different versions of a dataset is a large problem. This is why this paper aims to report the importance of this issue so that researchers can be made aware of this problem and appropriately report their results.
Tweets are the most concise form of communication in online social media, wherein a single tweet has the potential to make or break the discourse of the conversation. Online hate speech is more accessible than ever, and stifling its propagation is of utmost importance for social media companies and users for congenial communication. Most of the research barring a recent few has focused on classifying an individual tweet regardless of the tweet thread/context leading up to that point. One of the classical approaches to curb hate speech is to adopt a reactive strategy after the hate speech postage. The ex-post facto strategy results in neglecting subtle posts that do not show the potential to instigate hate speech on their own but may portend in the subsequent discussion ensuing in the post's replies. In this paper, we propose DRAGNET++, which aims to predict the intensity of hatred that a tweet can bring in through its reply chain in the future. It uses the semantic and propagating structure of the tweet threads to maximize the contextual information leading up to and the fall of hate intensity at each subsequent tweet. We explore three publicly available Twitter datasets -- Anti-Racism contains the reply tweets of a collection of social media discourse on racist remarks during US political and Covid-19 background; Anti-Social presents a dataset of 40 million tweets amidst the COVID-19 pandemic on anti-social behaviours; and Anti-Asian presents Twitter datasets collated based on anti-Asian behaviours during COVID-19 pandemic. All the curated datasets consist of structural graph information of the Tweet threads. We show that DRAGNET++ outperforms all the state-of-the-art baselines significantly. It beats the best baseline by an 11% margin on the Person correlation coefficient and a decrease of 25% on RMSE for the Anti-Racism dataset with a similar performance on the other two datasets.
Language is essentially a complex, intricate system of human expressions governed by grammatical rules. It poses a significant challenge to develop capable AI algorithms for comprehending and grasping a language. As a major approach, language modeling has been widely studied for language understanding and generation in the past two decades, evolving from statistical language models to neural language models. Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora, showing strong capabilities in solving various NLP tasks. Since researchers have found that model scaling can lead to performance improvement, they further study the scaling effect by increasing the model size to an even larger size. Interestingly, when the parameter scale exceeds a certain level, these enlarged language models not only achieve a significant performance improvement but also show some special abilities that are not present in small-scale language models. To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size. Recently, the research on LLMs has been largely advanced by both academia and industry, and a remarkable progress is the launch of ChatGPT, which has attracted widespread attention from society. The technical evolution of LLMs has been making an important impact on the entire AI community, which would revolutionize the way how we develop and use AI algorithms. In this survey, we review the recent advances of LLMs by introducing the background, key findings, and mainstream techniques. In particular, we focus on four major aspects of LLMs, namely pre-training, adaptation tuning, utilization, and capacity evaluation. Besides, we also summarize the available resources for developing LLMs and discuss the remaining issues for future directions.
Deep learning training is an expensive process that extensively uses GPUs, but not all model training saturates modern powerful GPUs. Multi-Instance GPU (MIG) is a new technology introduced by NVIDIA that can partition a GPU to better-fit workloads that do not require all the memory and compute resources of a full GPU. In this paper, we examine the performance of a MIG-enabled A100 GPU under deep learning workloads containing various sizes and combinations of models. We contrast the benefits of MIG to older workload collocation methods on GPUs: na\"ively submitting multiple processes on the same GPU and utilizing Multi-Process Service (MPS). Our results demonstrate that collocating multiple model training runs may yield significant benefits. In certain cases, it can lead up to four times training throughput despite increased epoch time. On the other hand, the aggregate memory footprint and compute needs of the models trained in parallel must fit the available memory and compute resources of the GPU. MIG can be beneficial thanks to its interference-free partitioning, especially when the sizes of the models align with the MIG partitioning options. MIG's rigid partitioning, however, may create sub-optimal GPU utilization for more dynamic mixed workloads. In general, we recommend MPS as the best performing and most flexible form of collocation for model training for a single user submitting training jobs.
As the availability, size and complexity of data have increased in recent years, machine learning (ML) techniques have become popular for modeling. Predictions resulting from applying ML models are often used for inference, decision-making, and downstream applications. A crucial yet often overlooked aspect of ML is uncertainty quantification, which can significantly impact how predictions from models are used and interpreted. Extreme Gradient Boosting (XGBoost) is one of the most popular ML methods given its simple implementation, fast computation, and sequential learning, which make its predictions highly accurate compared to other methods. However, techniques for uncertainty determination in ML models such as XGBoost have not yet been universally agreed among its varying applications. We propose enhancements to XGBoost whereby a modified quantile regression is used as the objective function to estimate uncertainty (QXGBoost). Specifically, we included the Huber norm in the quantile regression model to construct a differentiable approximation to the quantile regression error function. This key step allows XGBoost, which uses a gradient-based optimization algorithm, to make probabilistic predictions efficiently. QXGBoost was applied to create 90\% prediction intervals for one simulated dataset and one real-world environmental dataset of measured traffic noise. Our proposed method had comparable or better performance than the uncertainty estimates generated for regular and quantile light gradient boosting. For both the simulated and traffic noise datasets, the overall performance of the prediction intervals from QXGBoost were better than other models based on coverage width-based criterion.
Face clustering can provide pseudo-labels to the massive unlabeled face data and improve the performance of different face recognition models. The existing clustering methods generally aggregate the features within subgraphs that are often implemented based on a uniform threshold or a learned cutoff position. This may reduce the recall of subgraphs and hence degrade the clustering performance. This work proposed an efficient neighborhood-aware subgraph adjustment method that can significantly reduce the noise and improve the recall of the subgraphs, and hence can drive the distant nodes to converge towards the same centers. More specifically, the proposed method consists of two components, i.e. face embeddings enhancement using the embeddings from neighbors, and enclosed subgraph construction of node pairs for structural information extraction. The embeddings are combined to predict the linkage probabilities for all node pairs to replace the cosine similarities to produce new subgraphs that can be further used for aggregation of GCNs or other clustering methods. The proposed method is validated through extensive experiments against a range of clustering solutions using three benchmark datasets and numerical results confirm that it outperforms the SOTA solutions in terms of generalization capability.
With the urgent demand for generalized deep models, many pre-trained big models are proposed, such as BERT, ViT, GPT, etc. Inspired by the success of these models in single domains (like computer vision and natural language processing), the multi-modal pre-trained big models have also drawn more and more attention in recent years. In this work, we give a comprehensive survey of these models and hope this paper could provide new insights and helps fresh researchers to track the most cutting-edge works. Specifically, we firstly introduce the background of multi-modal pre-training by reviewing the conventional deep learning, pre-training works in natural language process, computer vision, and speech. Then, we introduce the task definition, key challenges, and advantages of multi-modal pre-training models (MM-PTMs), and discuss the MM-PTMs with a focus on data, objectives, network architectures, and knowledge enhanced pre-training. After that, we introduce the downstream tasks used for the validation of large-scale MM-PTMs, including generative, classification, and regression tasks. We also give visualization and analysis of the model parameters and results on representative downstream tasks. Finally, we point out possible research directions for this topic that may benefit future works. In addition, we maintain a continuously updated paper list for large-scale pre-trained multi-modal big models: //github.com/wangxiao5791509/MultiModal_BigModels_Survey
Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.
Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.