Maximally recoverable local reconstruction codes (MR LRCs for short) have received great attention in the last few years. Various constructions have been proposed in literatures. The main focus of this topic is to construct MR LRCs over small fields. An $(N=nr,r,h,\Gd)$-MR LRC is a linear code over finite field $\F_\ell$ of length $N$, whose codeword symbols are partitioned into $n$ local groups each of size $r$. Each local group can repair any $\Gd$ erasure errors and there are further $h$ global parity checks to provide fault tolerance from more global erasure patterns. MR LRCs deployed in practice have a small number of global parities such as $h=O(1)$. In this parameter setting, all previous constructions require the field size $\ell =\Omega_h (N^{h-1-o(1)})$. It remains challenging to improve this bound. In this paper, via subspace direct sum systems, we present a construction of MR LRC with the field size $\ell= O(N^{h-2+\frac1{h-1}-o(1)})$. In particular, for the most interesting cases where $h=2,3$, we improve previous constructions by either reducing field size or removing constraints. In addition, we also offer some constructions of MR LRCs for larger global parity $h$ that have field size incomparable with known upper bounds. The main techniques used in this paper is through subspace direct sum systems that we introduce. Interestingly, subspace direct sum systems are actually equivalent to $\F_q$-linear codes over extension fields. Based on various constructions of subspace direct sum systems, we are able to construct several classes of MR LRCs.
We study the classical expander codes, introduced by Sipser and Spielman \cite{SS96}. Given any constants $0< \alpha, \varepsilon < 1/2$, and an arbitrary bipartite graph with $N$ vertices on the left, $M < N$ vertices on the right, and left degree $D$ such that any left subset $S$ of size at most $\alpha N$ has at least $(1-\varepsilon)|S|D$ neighbors, we show that the corresponding linear code given by parity checks on the right has distance at least roughly $\frac{\alpha N}{2 \varepsilon }$. This is strictly better than the best known previous result of $2(1-\varepsilon ) \alpha N$ \cite{Sudan2000note, Viderman13b} whenever $\varepsilon < 1/2$, and improves the previous result significantly when $\varepsilon $ is small. Furthermore, we show that this distance is tight in general, thus providing a complete characterization of the distance of general expander codes. Next, we provide several efficient decoding algorithms, which vastly improve previous results in terms of the fraction of errors corrected, whenever $\varepsilon < \frac{1}{4}$. Finally, we also give a bound on the list-decoding radius of general expander codes, which beats the classical Johnson bound in certain situations (e.g., when the graph is almost regular and the code has a high rate). Our techniques exploit novel combinatorial properties of bipartite expander graphs. In particular, we establish a new size-expansion tradeoff, which may be of independent interests.
In this paper, we present two variations of an algorithm for signal reconstruction from one-bit or two-bit noisy observations of the discrete Fourier transform (DFT). The one-bit observations of the DFT correspond to the sign of its real part, whereas, the two-bit observations of the DFT correspond to the signs of both the real and imaginary parts of the DFT. We focus on images for analysis and simulations, thus using the sign of the 2D-DFT. This choice of the class of signals is inspired by previous works on this problem. For our algorithm, we show that the expected mean squared error (MSE) in signal reconstruction is asymptotically proportional to the inverse of the sampling rate. The samples are affected by additive zero-mean noise of known distribution. We solve this signal estimation problem by designing an algorithm that uses contraction mapping, based on the Banach fixed point theorem. Numerical tests with four benchmark images are provided to show the effectiveness of our algorithm. Various metrics for image reconstruction quality assessment such as PSNR, SSIM, ESSIM, and MS-SSIM are employed. On all four benchmark images, our algorithm outperforms the state-of-the-art in all of these metrics by a significant margin.
Recently, minimal linear codes have been extensively studied due to their applications in secret sharing schemes, secure two-party computations, and so on. Constructing minimal linear codes violating the Ashikhmin-Barg condition and then determining their weight distributions have been interesting in coding theory and cryptography. In this paper, a generic construction for binary linear codes with dimension $m+2$ is presented, then a necessary and sufficient condition for this binary linear code to be minimal is derived. Based on this condition and exponential sums, a new class of minimal binary linear codes violating the Ashikhmin-Barg condition is obtained, and then their weight enumerators are determined.
The total variation (TV) regularization has phenomenally boosted various variational models for image processing tasks. We propose combining the backward diffusion process in the earlier literature of image enhancement with the TV regularization and show that the resulting enhanced TV minimization model is particularly effective for reducing the loss of contrast, which is often encountered by models using the TV regularization. We establish stable reconstruction guarantees for the enhanced TV model from noisy subsampled measurements; non-adaptive linear measurements and variable-density sampled Fourier measurements are considered. In particular, under some weaker restricted isometry property conditions, the enhanced TV minimization model is shown to have tighter reconstruction error bounds than various TV-based models for the scenario where the level of noise is significant and the amount of measurements is limited. The advantages of the enhanced TV model are also numerically validated by preliminary experiments on the reconstruction of some synthetic, natural, and medical images.
Inverse source problems arise often in real-world applications, such as localizing unknown groundwater contaminant sources. Being different from Tikhonov regularization, the quasi-boundary value method has been proposed and analyzed as an effective way for regularizing such inverse source problems, which was shown to achieve an optimal order convergence rate under suitable assumptions. However, fast direct or iterative solvers for the resulting all-at-once large-scale linear systems have been rarely studied in the literature. In this work, we first proposed and analyzed a modified quasi-boundary value method, and then developed a diagonalization-based parallel-in-time (PinT) direct solver, which can achieve a dramatic speedup in CPU times when compared with MATLAB's sparse direct solver. In particular, the time-discretization matrix $B$ is shown to be diagonalizable, and the condition number of its eigenvector matrix $V$ is proven to exhibit quadratic growth, which guarantees the roundoff errors due to diagonalization is well controlled. Several 1D and 2D examples are presented to demonstrate the very promising computational efficiency of our proposed method, where the CPU times in 2D cases can be speedup by three orders of magnitude.
Consider a random graph process with $n$ vertices corresponding to points $v_{i} \sim {Unif}[0,1]$ embedded randomly in the interval, and where edges are inserted between $v_{i}, v_{j}$ independently with probability given by the graphon $w(v_{i},v_{j}) \in [0,1]$. Following Chuangpishit et al. (2015), we call a graphon $w$ diagonally increasing if, for each $x$, $w(x,y)$ decreases as $y$ moves away from $x$. We call a permutation $\sigma \in S_{n}$ an ordering of these vertices if $v_{\sigma(i)} < v_{\sigma(j)}$ for all $i < j$, and ask: how can we accurately estimate $\sigma$ from an observed graph? We present a randomized algorithm with output $\hat{\sigma}$ that, for a large class of graphons, achieves error $\max_{1 \leq i \leq n} | \sigma(i) - \hat{\sigma}(i)| = O^{*}(\sqrt{n})$ with high probability; we also show that this is the best-possible convergence rate for a large class of algorithms and proof strategies. Under an additional assumption that is satisfied by some popular graphon models, we break this "barrier" at $\sqrt{n}$ and obtain the vastly better rate $O^{*}(n^{\epsilon})$ for any $\epsilon > 0$. These improved seriation bounds can be combined with previous work to give more efficient and accurate algorithms for related tasks, including: estimating diagonally increasing graphons, and testing whether a graphon is diagonally increasing.
A graph is called a sum graph if its vertices can be labelled by distinct positive integers such that there is an edge between two vertices if and only if the sum of their labels is the label of another vertex of the graph. Most papers on sum graphs consider combinatorial questions like the minimum number of isolated vertices that need to be added to a given graph to make it a sum graph. In this paper, we initiate the study of sum graphs from the viewpoint of computational complexity. Notice that every $n$-vertex sum graph can be represented by a sorted list of $n$ positive integers where edge queries can be answered in $O(\log n)$ time. Therefore, limiting the size of the vertex labels also upper-bounds the space complexity of storing the graph in the database. We show that every $n$-vertex, $m$-edge, $d$-degenerate graph can be made a sum graph by adding at most $m$ isolated vertices to it, such that the size of each vertex label is at most $O(n^2d)$. This enables us to store the graph using $O(m\log n)$ bits of memory. For sparse graphs (graphs with $O(n)$ edges), this matches the trivial lower bound of $\Omega(n\log n)$. Since planar graphs and forests have constant degeneracy, our result implies an upper bound of $O(n^2)$ on their label size. The previously best known upper bound on the label size of general graphs with the minimum number of isolated vertices was $O(4^n)$, due to Kratochv\'il, Miller & Nguyen. Furthermore, their proof was existential, whereas our labelling can be constructed in polynomial time.
When assessing the performance of wireless communication systems operating over fading channels, one often encounters the problem of computing expectations of some functional of sums of independent random variables (RVs). The outage probability (OP) at the output of Equal Gain Combining (EGC) and Maximum Ratio Combining (MRC) receivers is among the most important performance metrics that falls within this framework. In general, closed form expressions of expectations of functionals applied to sums of RVs are out of reach. A naive Monte Carlo (MC) simulation is of course an alternative approach. However, this method requires a large number of samples for rare event problems (small OP values for instance). Therefore, it is of paramount importance to use variance reduction techniques to develop fast and efficient estimation methods. In this work, we use importance sampling (IS), being known for its efficiency in requiring less computations for achieving the same accuracy requirement. In this line, we propose a state-dependent IS scheme based on a stochastic optimal control (SOC) formulation to calculate rare events quantities that could be written in a form of an expectation of some functional of sums of independent RVs. Our proposed algorithm is generic and can be applicable without any restriction on the univariate distributions of the different fading envelops/gains or on the functional that is applied to the sum. We apply our approach to the Log-Normal distribution to compute the OP at the output of diversity receivers with and without co-channel interference. For each case, we show numerically that the proposed state-dependent IS algorithm compares favorably to most of the well-known estimators dealing with similar problems.
Many-user MAC is an important model for understanding energy efficiency of massive random access in 5G and beyond. Introduced in Polyanskiy'2017 for the AWGN channel, subsequent works have provided improved bounds on the asymptotic minimum energy-per-bit required to achieve a target per-user error at a given user density and payload, going beyond the AWGN setting. The best known rigorous bounds use spatially coupled codes along with the optimal AMP algorithm. But these bounds are infeasible to compute beyond a few (around 10) bits of payload. In this paper, we provide new achievability bounds for the many-user AWGN and quasi-static Rayleigh fading MACs using the spatially coupled codebook design along with a scalar AMP algorithm. The obtained bounds are computable even up to 100 bits and outperform the previous ones at this payload.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.