亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies an $N$--agent cost-coupled game where the agents are connected via an unreliable capacity constrained network. Each agent receives state information over that network which loses packets with probability $p$. A Base station (BS) actively schedules agent communications over the network by minimizing a weighted Age of Information (WAoI) based cost function under a capacity limit $\mathcal{C} < N$ on the number of transmission attempts at each instant. Under a standard information structure, we show that the problem can be decoupled into a scheduling problem for the BS and a game problem for the $N$ agents. Since the scheduling problem is an NP hard combinatorics problem, we propose an approximately optimal solution which approaches the optimal solution as $N \rightarrow \infty$. In the process, we also provide some insights on the case without channel erasure. Next, to solve the large population game problem, we use the mean-field game framework to compute an approximate decentralized Nash equilibrium. Finally, we validate the theoretical results using a numerical example.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際(ji)網絡會議。 Publisher:IFIP。 SIT:

Reinforcement learning (RL) problems over general state and action spaces are notoriously challenging. In contrast to the tableau setting, one can not enumerate all the states and then iteratively update the policies for each state. This prevents the application of many well-studied RL methods especially those with provable convergence guarantees. In this paper, we first present a substantial generalization of the recently developed policy mirror descent method to deal with general state and action spaces. We introduce new approaches to incorporate function approximation into this method, so that we do not need to use explicit policy parameterization at all. Moreover, we present a novel policy dual averaging method for which possibly simpler function approximation techniques can be applied. We establish linear convergence rate to global optimality or sublinear convergence to stationarity for these methods applied to solve different classes of RL problems under exact policy evaluation. We then define proper notions of the approximation errors for policy evaluation and investigate their impact on the convergence of these methods applied to general-state RL problems with either finite-action or continuous-action spaces. To the best of our knowledge, the development of these algorithmic frameworks as well as their convergence analysis appear to be new in the literature.

We consider the problem of information aggregation in federated decision making, where a group of agents collaborate to infer the underlying state of nature without sharing their private data with the central processor or each other. We analyze the non-Bayesian social learning strategy in which agents incorporate their individual observations into their opinions (i.e., soft-decisions) with Bayes rule, and the central processor aggregates these opinions by arithmetic or geometric averaging. Building on our previous work, we establish that both pooling strategies result in asymptotic normality characterization of the system, which, for instance, can be utilized to derive approximate expressions for the error probability. We verify the theoretical findings with simulations and compare both strategies.

The autocovariance and cross-covariance functions naturally appear in many time series procedures (e.g., autoregression or prediction). Under assumptions, empirical versions of the autocovariance and cross-covariance are asymptotically normal with covariance structure depending on the second and fourth order spectra. Under non-restrictive assumptions, we derive a bound for the Wasserstein distance of the finite sample distribution of the estimator of the autocovariance and cross-covariance to the Gaussian limit. An error of approximation to the second-order moments of the estimator and an $m$-dependent approximation are the key ingredients in order to obtain the bound. As a worked example, we discuss how to compute the bound for causal autoregressive processes of order 1 with different distributions for the innovations. To assess our result, we compare our bound to Wasserstein distances obtained via simulation.

We propose a new auto-regressive model for the statistical analysis of multivariate distributional time series. The data of interest consist of a collection of multiple series of probability measures supported over a bounded interval of the real line, and that are indexed by distinct time instants. The probability measures are modelled as random objects in the Wasserstein space. We establish the auto-regressive model in the tangent space at the Lebesgue measure by first centering all the raw measures so that their Fr\'echet means turn to be the Lebesgue measure. Using the theory of iterated random function systems, results on the existence, uniqueness and stationarity of the solution of such a model are provided. We also propose a consistent estimator for the model coefficient. In addition to the analysis of simulated data, the proposed model is illustrated with two real data sets made of observations from age distribution in different countries and bike sharing network in Paris. Finally, due to the positive and boundedness constraints that we impose on the model coefficients, the proposed estimator that is learned under these constraints, naturally has a sparse structure. The sparsity allows furthermore the application of the proposed model in learning a graph of temporal dependency from the multivariate distributional time series.

In this paper, we study the sampling problem for first-order logic proposed recently by Wang et al. -- how to efficiently sample a model of a given first-order sentence on a finite domain? We extend their result for the universally-quantified subfragment of two-variable logic $\mathbf{FO}^2$ ($\mathbf{UFO}^2$) to the entire fragment of $\mathbf{FO}^2$. Specifically, we prove the domain-liftability under sampling of $\mathbf{FO}^2$, meaning that there exists a sampling algorithm for $\mathbf{FO}^2$ that runs in time polynomial in the domain size. We then further show that this result continues to hold even in the presence of counting constraints, such as $\forall x\exists_{=k} y: \varphi(x,y)$ and $\exists_{=k} x\forall y: \varphi(x,y)$, for some quantifier-free formula $\varphi(x,y)$. Our proposed method is constructive, and the resulting sampling algorithms have potential applications in various areas, including the uniform generation of combinatorial structures and sampling in statistical-relational models such as Markov logic networks and probabilistic logic programs.

Answering complex queries on knowledge graphs is important but particularly challenging because of the data incompleteness. Query embedding methods address this issue by learning-based models and simulating logical reasoning with set operators. Previous works focus on specific forms of embeddings, but scoring functions between embeddings are underexplored. In contrast to existing scoring functions motivated by local comparison or global transport, this work investigates the local and global trade-off with unbalanced optimal transport theory. Specifically, we embed sets as bounded measures in $\real$ endowed with a scoring function motivated by the Wasserstein-Fisher-Rao metric. Such a design also facilitates closed-form set operators in the embedding space. Moreover, we introduce a convolution-based algorithm for linear time computation and a block-diagonal kernel to enforce the trade-off. Results show that WFRE can outperform existing query embedding methods on standard datasets, evaluation sets with combinatorially complex queries, and hierarchical knowledge graphs. Ablation study shows that finding a better local and global trade-off is essential for performance improvement.

Many major questions in the theory of evolutionary dynamics can in a meaningful sense be mapped to analyses of stochastic trajectories in game theoretic contexts. Often the approach is to analyze small numbers of distinct populations and/or to assume dynamics occur within a regime of population sizes large enough that deterministic trajectories are an excellent approximation of reality. The addition of ecological factors, termed "eco-evolutionary dynamics", further complicates the dynamics and results in many problems which are intractable or impractically messy for current theoretical methods. However, an analogous but underexplored approach is to analyze these systems with an eye primarily towards uncertainty in the models themselves. In the language of researchers in Reinforcement Learning and adjacent fields, a Partially Observable Markov Process. Here we introduce a duality which maps the complexity of accounting for both ecology and individual genotypic/phenotypic types onto a problem of accounting solely for underlying information-theoretic computations rather than drawing physical boundaries which do not change the computations. Armed with this equivalence between computation and the relevant biophysics, which we term Taak-duality, we attack the problem of "directed evolution" in the form of a Partially Observable Markov Decision Process. This provides a tractable case of studying eco-evolutionary trajectories of a highly general type, and of analyzing questions of potential limits on the efficiency of evolution in the directed case.

Recent years have witnessed significant advances in technologies and services in modern network applications, including smart grid management, wireless communication, cybersecurity as well as multi-agent autonomous systems. Considering the heterogeneous nature of networked entities, emerging network applications call for game-theoretic models and learning-based approaches in order to create distributed network intelligence that responds to uncertainties and disruptions in a dynamic or an adversarial environment. This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks. We provide an selective overview of game-theoretic learning algorithms within the framework of stochastic approximation theory, and associated applications in some representative contexts of modern network systems, such as the next generation wireless communication networks, the smart grid and distributed machine learning. In addition to existing research works on game-theoretic learning over networks, we highlight several new angles and research endeavors on learning in games that are related to recent developments in artificial intelligence. Some of the new angles extrapolate from our own research interests. The overall objective of the paper is to provide the reader a clear picture of the strengths and challenges of adopting game-theoretic learning methods within the context of network systems, and further to identify fruitful future research directions on both theoretical and applied studies.

Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.

Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.

北京阿比特科技有限公司