亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The autocovariance and cross-covariance functions naturally appear in many time series procedures (e.g., autoregression or prediction). Under assumptions, empirical versions of the autocovariance and cross-covariance are asymptotically normal with covariance structure depending on the second and fourth order spectra. Under non-restrictive assumptions, we derive a bound for the Wasserstein distance of the finite sample distribution of the estimator of the autocovariance and cross-covariance to the Gaussian limit. An error of approximation to the second-order moments of the estimator and an $m$-dependent approximation are the key ingredients in order to obtain the bound. As a worked example, we discuss how to compute the bound for causal autoregressive processes of order 1 with different distributions for the innovations. To assess our result, we compare our bound to Wasserstein distances obtained via simulation.

相關內容

This paper presents a novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. We show mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach we provide a generalization of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case. We demonstrate that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. We illustrate its practical advantages by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and time series of windspeed data at six locations in California.

Intraday electricity markets play an increasingly important role in balancing the intermittent generation of renewable energy resources, which creates a need for accurate probabilistic price forecasts. However, research to date has focused on univariate approaches, while in many European intraday electricity markets all delivery periods are traded in parallel. Thus, the dependency structure between different traded products and the corresponding cross-product effects cannot be ignored. We aim to fill this gap in the literature by using copulas to model the high-dimensional intraday price return vector. We model the marginal distribution as a zero-inflated Johnson's $S_U$ distribution with location, scale and shape parameters that depend on market and fundamental data. The dependence structure is modelled using latent beta regression to account for the particular market structure of the intraday electricity market, such as overlapping but independent trading sessions for different delivery days. We allow the dependence parameter to be time-varying. We validate our approach in a simulation study for the German intraday electricity market and find that modelling the dependence structure improves the forecasting performance. Additionally, we shed light on the impact of the single intraday coupling (SIDC) on the trading activity and price distribution and interpret our results in light of the market efficiency hypothesis. The approach is directly applicable to other European electricity markets.

We propose a model to flexibly estimate joint tail properties by exploiting the convergence of an appropriately scaled point cloud onto a compact limit set. Characteristics of the shape of the limit set correspond to key tail dependence properties. We directly model the shape of the limit set using B\'ezier splines, which allow flexible and parsimonious specification of shapes in two dimensions. We then fit the B\'ezier splines to data in pseudo-polar coordinates using Markov chain Monte Carlo, utilizing a limiting approximation to the conditional likelihood of the radii given angles. By imposing appropriate constraints on the parameters of the B\'ezier splines, we guarantee that each posterior sample is a valid limit set boundary, allowing direct posterior analysis of any quantity derived from the shape of the curve. Furthermore, we obtain interpretable inference on the asymptotic dependence class by using mixture priors with point masses on the corner of the unit box. Finally, we apply our model to bivariate datasets of extremes of variables related to fire risk and air pollution.

The equilibrium configuration of a plasma in an axially symmetric reactor is described mathematically by a free boundary problem associated with the celebrated Grad--Shafranov equation. The presence of uncertainty in the model parameters introduces the need to quantify the variability in the predictions. This is often done by computing a large number of model solutions on a computational grid for an ensemble of parameter values and then obtaining estimates for the statistical properties of solutions. In this study, we explore the savings that can be obtained using multilevel Monte Carlo methods, which reduce costs by performing the bulk of the computations on a sequence of spatial grids that are coarser than the one that would typically be used for a simple Monte Carlo simulation. We examine this approach using both a set of uniformly refined grids and a set of adaptively refined grids guided by a discrete error estimator. Numerical experiments show that multilevel methods dramatically reduce the cost of simulation, with cost reductions typically on the order of 60 or more and possibly as large as 200. Adaptive gridding results in more accurate computation of geometric quantities such as x-points associated with the model.

Two new numerical schemes to approximate the Cahn-Hilliard equation with degenerate mobility (between stable values 0 and 1) are presented, by using two different non-centered approximation of the mobility. We prove that both schemes are energy stable and preserve the maximum principle approximately, i.e. the amount of the solution being outside of the interval [0,1] goes to zero in terms of a truncation parameter. Additionally, we present several numerical results in order to show the accuracy and the well behavior of the proposed schemes, comparing both schemes and the corresponding centered scheme.

Many multivariate data sets exhibit a form of positive dependence, which can either appear globally between all variables or only locally within particular subgroups. A popular notion of positive dependence that allows for localized positivity is positive association. In this work we introduce the notion of extremal positive association for multivariate extremes from threshold exceedances. Via a sufficient condition for extremal association, we show that extremal association generalizes extremal tree models. For H\"usler--Reiss distributions the sufficient condition permits a parametric description that we call the metric property. As the parameter of a H\"usler--Reiss distribution is a Euclidean distance matrix, the metric property relates to research in electrical network theory and Euclidean geometry. We show that the metric property can be localized with respect to a graph and study surrogate likelihood inference. This gives rise to a two-step estimation procedure for locally metrical H\"usler--Reiss graphical models. The second step allows for a simple dual problem, which is implemented via a gradient descent algorithm. Finally, we demonstrate our results on simulated and real data.

Deep learning methods have gained considerable interest in the numerical solution of various partial differential equations (PDEs). One particular focus is on physics-informed neural networks (PINNs), which integrate physical principles into neural networks. This transforms the process of solving PDEs into optimization problems for neural networks. In order to address a collection of advection-diffusion equations (ADE) in a range of difficult circumstances, this paper proposes a novel network structure. This architecture integrates the solver, which is a multi-scale deep neural network (MscaleDNN) utilized in the PINN method, with a hard constraint technique known as HCPINN. This method introduces a revised formulation of the desired solution for advection-diffusion equations (ADE) by utilizing a loss function that incorporates the residuals of the governing equation and penalizes any deviations from the specified boundary and initial constraints. By surpassing the boundary constraints automatically, this method improves the accuracy and efficiency of the PINN technique. To address the ``spectral bias'' phenomenon in neural networks, a subnetwork structure of MscaleDNN and a Fourier-induced activation function are incorporated into the HCPINN, resulting in a hybrid approach called SFHCPINN. The effectiveness of SFHCPINN is demonstrated through various numerical experiments involving advection-diffusion equations (ADE) in different dimensions. The numerical results indicate that SFHCPINN outperforms both standard PINN and its subnetwork version with Fourier feature embedding. It achieves remarkable accuracy and efficiency while effectively handling complex boundary conditions and high-frequency scenarios in ADE.

We consider approximating the solution of the Helmholtz exterior Dirichlet problem for a nontrapping obstacle, with boundary data coming from plane-wave incidence, by the solution of the corresponding boundary value problem where the exterior domain is truncated and a local absorbing boundary condition coming from a Pad\'e approximation (of arbitrary order) of the Dirichlet-to-Neumann map is imposed on the artificial boundary (recall that the simplest such boundary condition is the impedance boundary condition). We prove upper- and lower-bounds on the relative error incurred by this approximation, both in the whole domain and in a fixed neighbourhood of the obstacle (i.e. away from the artificial boundary). Our bounds are valid for arbitrarily-high frequency, with the artificial boundary fixed, and show that the relative error is bounded away from zero, independent of the frequency, and regardless of the geometry of the artificial boundary.

The accurate and efficient evaluation of Newtonian potentials over general 2-D domains is important for the numerical solution of Poisson's equation and volume integral equations. In this paper, we present a simple and efficient high-order algorithm for computing the Newtonian potential over a planar domain discretized by an unstructured mesh. The algorithm is based on the use of Green's third identity for transforming the Newtonian potential into a collection of layer potentials over the boundaries of the mesh elements, which can be easily evaluated by the Helsing-Ojala method. One important component of our algorithm is the use of high-order (up to order 20) bivariate polynomial interpolation in the monomial basis, for which we provide extensive justification. The performance of our algorithm is illustrated through several numerical experiments.

The assessment of iris uniqueness plays a crucial role in analyzing the capabilities and limitations of iris recognition systems. Among the various methodologies proposed, Daugman's approach to iris uniqueness stands out as one of the most widely accepted. According to Daugman, uniqueness refers to the iris recognition system's ability to enroll an increasing number of classes while maintaining a near-zero probability of collision between new and enrolled classes. Daugman's approach involves creating distinct IrisCode templates for each iris class within the system and evaluating the sustainable population under a fixed Hamming distance between codewords. In our previous work [23], we utilized Rate-Distortion Theory (as it pertains to the limits of error-correction codes) to establish boundaries for the maximum possible population of iris classes supported by Daugman's IrisCode, given the constraint of a fixed Hamming distance between codewords. Building upon that research, we propose a novel methodology to evaluate the scalability of an iris recognition system, while also measuring iris quality. We achieve this by employing a sphere-packing bound for Gaussian codewords and adopting a approach similar to Daugman's, which utilizes relative entropy as a distance measure between iris classes. To demonstrate the efficacy of our methodology, we illustrate its application on two small datasets of iris images. We determine the sustainable maximum population for each dataset based on the quality of the images. By providing these illustrations, we aim to assist researchers in comprehending the limitations inherent in their recognition systems, depending on the quality of their iris databases.

北京阿比特科技有限公司