亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multivariate functional data present theoretical and practical complications which are not found in univariate functional data. One of these is a situation where the component functions of multivariate functional data are positive and are subject to mutual time warping. That is, the component processes exhibit a similar shape but are subject to systematic phase variation across their time domains. We introduce a novel model for multivariate functional data that incorporates such mutual time warping via nonlinear transport functions. This model allows for meaningful interpretation and is well suited to represent functional vector data. The proposed approach combines a random amplitude factor for each component with population based registration across the components of a multivariate functional data vector and also includes a latent population function, which corresponds to a common underlying trajectory as well as subject-specific warping component. We also propose estimators for all components of the model. The proposed approach not only leads to a novel representation for multivariate functional data, but is also useful for downstream analyses such as Fr\'echet regression. Rates of convergence are established when curves are fully observed or observed with measurement error. The usefulness of the model, interpretations and practical aspects are illustrated in simulations and with application to multivariate human growth curves as well as multivariate environmental pollution data.

相關內容

Even though Nearest Neighbor Gaussian Processes (NNGP) alleviate considerably MCMC implementation of Bayesian space-time models, they do not solve the convergence problems caused by high model dimension. Frugal alternatives such as response or collapsed algorithms are an answer.gree Our approach is to keep full data augmentation but to try and make it more efficient. We present two strategies to do so. The first scheme is to pay a particular attention to the seemingly trivial fixed effects of the model. We show empirically that re-centering the latent field on the intercept critically improves chain behavior. We extend this approach to other fixed effects that may interfere with a coherent spatial field. We propose a simple method that requires no tuning while remaining affordable thanks to NNGP's sparsity. The second scheme accelerates the sampling of the random field using Chromatic samplers. This method makes long sequential simulation boil down to group-parallelized or group-vectorized sampling. The attractive possibility to parallelize NNGP likelihood can therefore be carried over to field sampling. We present a R implementation of our methods for Gaussian fields in the public repository //github.com/SebastienCoube/Improving_NNGP_full_augmentation . An extensive vignette is provided. We run our implementation on two synthetic toy examples along with the state of the art package spNNGP. Finally, we apply our method on a real data set of lead contamination in the United States of America mainland.

The identification of factors associated with mental and behavioral disorders in early childhood is critical both for psychopathology research and the support of primary health care practices. Motivated by the Millennium Cohort Study, in this paper we study the effect of a comprehensive set of covariates on children's emotional and behavioural trajectories in England. To this end, we develop a Quantile Mixed Hidden Markov Model for joint estimation of multiple quantiles in a linear regression setting for multivariate longitudinal data. The novelty of the proposed approach is based on the Multivariate Asymmetric Laplace distribution which allows to jointly estimate the quantiles of the univariate conditional distributions of a multivariate response, accounting for possible correlation between the outcomes. Sources of unobserved heterogeneity and serial dependency due to repeated measures are modeled through the introduction of individual-specific, time-constant random coefficients and time-varying parameters evolving over time with a Markovian structure, respectively. The inferential approach is carried out through the construction of a suitable Expectation-Maximization algorithm without parametric assumptions on the random effects distribution.

We study a functional linear regression model that deals with functional responses and allows for both functional covariates and high-dimensional vector covariates. The proposed model is flexible and nests several functional regression models in the literature as special cases. Based on the theory of reproducing kernel Hilbert spaces (RKHS), we propose a penalized least squares estimator that can accommodate functional variables observed on discrete sample points. Besides a conventional smoothness penalty, a group Lasso-type penalty is further imposed to induce sparsity in the high-dimensional vector predictors. We derive finite sample theoretical guarantees and show that the excess prediction risk of our estimator is minimax optimal. Furthermore, our analysis reveals an interesting phase transition phenomenon that the optimal excess risk is determined jointly by the smoothness and the sparsity of the functional regression coefficients. A novel efficient optimization algorithm based on iterative coordinate descent is devised to handle the smoothness and group penalties simultaneously. Simulation studies and real data applications illustrate the promising performance of the proposed approach compared to the state-of-the-art methods in the literature.

In this paper, we propose a propensity score adapted variable selection procedure to select covariates for inclusion in propensity score models, in order to eliminate confounding bias and improve statistical efficiency in observational studies. Our variable selection approach is specially designed for causal inference, it only requires the propensity scores to be $\sqrt{n}$-consistently estimated through a parametric model and need not correct specification of potential outcome models. By using estimated propensity scores as inverse probability treatment weights in performing an adaptive lasso on the outcome, it successfully excludes instrumental variables, and includes confounders and outcome predictors. We show its oracle properties under the "linear association" conditions. We also perform some numerical simulations to illustrate our propensity score adapted covariate selection procedure and evaluate its performance under model misspecification. Comparison to other covariate selection methods is made using artificial data as well, through which we find that it is more powerful in excluding instrumental variables and spurious covariates.

Propensity score methods have been shown to be powerful in obtaining efficient estimators of average treatment effect (ATE) from observational data, especially under the existence of confounding factors. When estimating, deciding which type of covariates need to be included in the propensity score function is important, since incorporating some unnecessary covariates may amplify both bias and variance of estimators of ATE. In this paper, we show that including additional instrumental variables that satisfy the exclusion restriction for outcome will do harm to the statistical efficiency. Also, we prove that, controlling for covariates that appear as outcome predictors, i.e. predict the outcomes and are irrelevant to the exposures, can help reduce the asymptotic variance of ATE estimation. We also note that, efficiently estimating the ATE by non-parametric or semi-parametric methods require the estimated propensity score function, as described in Hirano et al. (2003)\cite{Hirano2003}. Such estimation procedure usually asks for many regularity conditions, Rothe (2016)\cite{Rothe2016} also illustrated this point and proposed a known propensity score (KPS) estimator that requires mild regularity conditions and is still fully efficient. In addition, we introduce a linearly modified (LM) estimator that is nearly efficient in most general settings and need not estimation of the propensity score function, hence convenient to calculate. The construction of this estimator borrows idea from the interaction estimator of Lin (2013)\cite{Lin2013}, in which regression adjustment with interaction terms are applied to deal with data arising from a completely randomized experiment. As its name suggests, the LM estimator can be viewed as a linear modification on the IPW estimator using known propensity scores. We will also investigate its statistical properties both analytically and numerically.

A central topic in functional data analysis is how to design an optimaldecision rule, based on training samples, to classify a data function. We exploit the optimal classification problem when data functions are Gaussian processes. Sharp nonasymptotic convergence rates for minimax excess mis-classification risk are derived in both settings that data functions are fully observed and discretely observed. We explore two easily implementable classifiers based on discriminant analysis and deep neural network, respectively, which are both proven to achieve optimality in Gaussian setting. Our deepneural network classifier is new in literature which demonstrates outstanding performance even when data functions are non-Gaussian. In case of discretely observed data, we discover a novel critical sampling frequency thatgoverns the sharp convergence rates. The proposed classifiers perform favorably in finite-sample applications, as we demonstrate through comparisonswith other functional classifiers in simulations and one real data application.

Compositional data are non-negative data collected in a rectangular matrix with a constant row sum. Due to the non-negativity the focus is on conditional proportions that add up to 1 for each row. A row of conditional proportions is called an observed budget. Latent budget analysis (LBA) assumes a mixture of latent budgets that explains the observed budgets. LBA is usually fitted to a contingency table, where the rows are levels of one or more explanatory variables and the columns the levels of a response variable. In prospective studies, there is only knowledge about the explanatory variables of individuals and interest goes out to predicting the response variable. Thus, a form of LBA is needed that has the functionality of prediction. Previous studies proposed a constrained neural network (NN) extension of LBA that was hampered by an unsatisfying prediction ability. Here we propose LBA-NN, a feed forward NN model that yields a similar interpretation to LBA but equips LBA with a better ability of prediction. A stable and plausible interpretation of LBA-NN is obtained through the use of importance plots and table, that show the relative importance of all explanatory variables on the response variable. An LBA-NN-K- means approach that applies K-means clustering on the importance table is used to produce K clusters that are comparable to K latent budgets in LBA. Here we provide different experiments where LBA-NN is implemented and compared with LBA. In our analysis, LBA-NN outperforms LBA in prediction in terms of accuracy, specificity, recall and mean square error. We provide open-source software at GitHub.

Applications such as the analysis of microbiome data have led to renewed interest in statistical methods for compositional data, i.e., multivariate data in the form of probability vectors that contain relative proportions. In particular, there is considerable interest in modeling interactions among such relative proportions. To this end we propose a class of exponential family models that accommodate general patterns of pairwise interaction while being supported on the probability simplex. Special cases include the family of Dirichlet distributions as well as Aitchison's additive logistic normal distributions. Generally, the distributions we consider have a density that features a difficult to compute normalizing constant. To circumvent this issue, we design effective estimation methods based on generalized versions of score matching. A high-dimensional analysis of our estimation methods shows that the simplex domain is handled as efficiently as previously studied full-dimensional domains.

Dimension reduction for high-dimensional compositional data plays an important role in many fields, where the principal component analysis of the basis covariance matrix is of scientific interest. In practice, however, the basis variables are latent and rarely observed, and standard techniques of principal component analysis are inadequate for compositional data because of the simplex constraint. To address the challenging problem, we relate the principal subspace of the centered log-ratio compositional covariance to that of the basis covariance, and prove that the latter is approximately identifiable with the diverging dimensionality under some subspace sparsity assumption. The interesting blessing-of-dimensionality phenomenon enables us to propose the principal subspace estimation methods by using the sample centered log-ratio covariance. We also derive nonasymptotic error bounds for the subspace estimators, which exhibits a tradeoff between identification and estimation. Moreover, we develop efficient proximal alternating direction method of multipliers algorithms to solve the nonconvex and nonsmooth optimization problems. Simulation results demonstrate that the proposed methods perform as well as the oracle methods with known basis. Their usefulness is illustrated through an analysis of word usage pattern for statisticians.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

北京阿比特科技有限公司