亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rapid advancement of quantum computing has increasingly highlighted its potential in the realm of machine learning, particularly in the context of natural language processing (NLP) tasks. Quantum machine learning (QML) leverages the unique capabilities of quantum computing to offer novel perspectives and methodologies for complex data processing and pattern recognition challenges. This paper introduces a novel Quantum Mixed-State Attention Network (QMSAN), which integrates the principles of quantum computing with classical machine learning algorithms, especially self-attention networks, to enhance the efficiency and effectiveness in handling NLP tasks. QMSAN model employs a quantum attention mechanism based on mixed states, enabling efficient direct estimation of similarity between queries and keys within the quantum domain, leading to more effective attention weight acquisition. Additionally, we propose an innovative quantum positional encoding scheme, implemented through fixed quantum gates within the quantum circuit, to enhance the model's accuracy. Experimental validation on various datasets demonstrates that QMSAN model outperforms existing quantum and classical models in text classification, achieving significant performance improvements. QMSAN model not only significantly reduces the number of parameters but also exceeds classical self-attention networks in performance, showcasing its strong capability in data representation and information extraction. Furthermore, our study investigates the model's robustness in different quantum noise environments, showing that QMSAN possesses commendable robustness to low noise.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

In the rapidly evolving field of artificial intelligence, the ability to harness and integrate knowledge across various domains stands as a paramount challenge and opportunity. This study introduces a novel approach to cross-domain knowledge discovery through the deployment of multi-AI agents, each specialized in distinct knowledge domains. These AI agents, designed to function as domain-specific experts, collaborate in a unified framework to synthesize and provide comprehensive insights that transcend the limitations of single-domain expertise. By facilitating seamless interaction among these agents, our platform aims to leverage the unique strengths and perspectives of each, thereby enhancing the process of knowledge discovery and decision-making. We present a comparative analysis of the different multi-agent workflow scenarios evaluating their performance in terms of efficiency, accuracy, and the breadth of knowledge integration. Through a series of experiments involving complex, interdisciplinary queries, our findings demonstrate the superior capability of domain specific multi-AI agent system in identifying and bridging knowledge gaps. This research not only underscores the significance of collaborative AI in driving innovation but also sets the stage for future advancements in AI-driven, cross-disciplinary research and application. Our methods were evaluated on a small pilot data and it showed a trend we expected, if we increase the amount of data we custom train the agents, the trend is expected to be more smooth.

Graph-level contrastive learning, aiming to learn the representations for each graph by contrasting two augmented graphs, has attracted considerable attention. Previous studies usually simply assume that a graph and its augmented graph as a positive pair, otherwise as a negative pair. However, it is well known that graph structure is always complex and multi-scale, which gives rise to a fundamental question: after graph augmentation, will the previous assumption still hold in reality? By an experimental analysis, we discover the semantic information of an augmented graph structure may be not consistent as original graph structure, and whether two augmented graphs are positive or negative pairs is highly related with the multi-scale structures. Based on this finding, we propose a multi-scale subgraph contrastive learning architecture which is able to characterize the fine-grained semantic information. Specifically, we generate global and local views at different scales based on subgraph sampling, and construct multiple contrastive relationships according to their semantic associations to provide richer self-supervised signals. Extensive experiments and parametric analyzes on eight graph classification real-world datasets well demonstrate the effectiveness of the proposed method.

We develop a symmetric monoidal closed category of games, incorporating sums and products, to model quantum computation at higher types. This model is expressive, capable of representing all unitary operators at base types. It is compatible with base types and realizable by unitary operators.

Deploying reinforcement learning (RL) systems requires robustness to uncertainty and model misspecification, yet prior robust RL methods typically only study noise introduced independently across time. However, practical sources of uncertainty are usually coupled across time. We formally introduce temporally-coupled perturbations, presenting a novel challenge for existing robust RL methods. To tackle this challenge, we propose GRAD, a novel game-theoretic approach that treats the temporally-coupled robust RL problem as a partially observable two-player zero-sum game. By finding an approximate equilibrium within this game, GRAD optimizes for general robustness against temporally-coupled perturbations. Experiments on continuous control tasks demonstrate that, compared with prior methods, our approach achieves a higher degree of robustness to various types of attacks on different attack domains, both in settings with temporally-coupled perturbations and decoupled perturbations.

Multi-task reinforcement learning (MTRL) demonstrate potential for enhancing the generalization of a robot, enabling it to perform multiple tasks concurrently. However, the performance of MTRL may still be susceptible to conflicts between tasks and negative interference. To facilitate efficient MTRL, we propose Task-Specific Action Correction (TSAC), a general and complementary approach designed for simultaneous learning of multiple tasks. TSAC decomposes policy learning into two separate policies: a shared policy (SP) and an action correction policy (ACP). To alleviate conflicts resulting from excessive focus on specific tasks' details in SP, ACP incorporates goal-oriented sparse rewards, enabling an agent to adopt a long-term perspective and achieve generalization across tasks. Additional rewards transform the original problem into a multi-objective MTRL problem. Furthermore, to convert the multi-objective MTRL into a single-objective formulation, TSAC assigns a virtual expected budget to the sparse rewards and employs Lagrangian method to transform a constrained single-objective optimization into an unconstrained one. Experimental evaluations conducted on Meta-World's MT10 and MT50 benchmarks demonstrate that TSAC outperforms existing state-of-the-art methods, achieving significant improvements in both sample efficiency and effective action execution.

Multi-objective reinforcement learning (MORL) is increasingly relevant due to its resemblance to real-world scenarios requiring trade-offs between multiple objectives. Catering to diverse user preferences, traditional reinforcement learning faces amplified challenges in MORL. To address the difficulty of training policies from scratch in MORL, we introduce demonstration-guided multi-objective reinforcement learning (DG-MORL). This novel approach utilizes prior demonstrations, aligns them with user preferences via corner weight support, and incorporates a self-evolving mechanism to refine suboptimal demonstrations. Our empirical studies demonstrate DG-MORL's superiority over existing MORL algorithms, establishing its robustness and efficacy, particularly under challenging conditions. We also provide an upper bound of the algorithm's sample complexity.

Event detection is one of the fundamental tasks in information extraction and knowledge graph. However, a realistic event detection system often needs to deal with new event classes constantly. These new classes usually have only a few labeled instances as it is time-consuming and labor-intensive to annotate a large number of unlabeled instances. Therefore, this paper proposes a new task, called class-incremental few-shot event detection. Nevertheless, this task faces two problems, i.e., old knowledge forgetting and new class overfitting. To solve these problems, this paper further presents a novel knowledge distillation and prompt learning based method, called Prompt-KD. Specifically, to handle the forgetting problem about old knowledge, Prompt-KD develops an attention based multi-teacher knowledge distillation framework, where the ancestor teacher model pre-trained on base classes is reused in all learning sessions, and the father teacher model derives the current student model via adaptation. On the other hand, in order to cope with the few-shot learning scenario and alleviate the corresponding new class overfitting problem, Prompt-KD is also equipped with a prompt learning mechanism. Extensive experiments on two benchmark datasets, i.e., FewEvent and MAVEN, demonstrate the superior performance of Prompt-KD.

Transfer learning is a critical part of real-world machine learning deployments and has been extensively studied in experimental works with overparameterized neural networks. However, even in the simplest setting of linear regression a notable gap still exists in the theoretical understanding of transfer learning. In-distribution research on high-dimensional linear regression has led to the identification of a phenomenon known as \textit{benign overfitting}, in which linear interpolators overfit to noisy training labels and yet still generalize well. This behavior occurs under specific conditions on the source covariance matrix and input data dimension. Therefore, it is natural to wonder how such high-dimensional linear models behave under transfer learning. We prove the first non-asymptotic excess risk bounds for benignly-overfit linear interpolators in the transfer learning setting. From our analysis, we propose a taxonomy of \textit{beneficial} and \textit{malignant} covariate shifts based on the degree of overparameterization. We follow our analysis with empirical studies that show these beneficial and malignant covariate shifts for linear interpolators on real image data, and for fully-connected neural networks in settings where the input data dimension is larger than the training sample size.

Passive, compact, single-shot 3D sensing is useful in many application areas such as microscopy, medical imaging, surgical navigation, and autonomous driving where form factor, time, and power constraints can exist. Obtaining RGB-D scene information over a short imaging distance, in an ultra-compact form factor, and in a passive, snapshot manner is challenging. Dual-pixel (DP) sensors are a potential solution to achieve the same. DP sensors collect light rays from two different halves of the lens in two interleaved pixel arrays, thus capturing two slightly different views of the scene, like a stereo camera system. However, imaging with a DP sensor implies that the defocus blur size is directly proportional to the disparity seen between the views. This creates a trade-off between disparity estimation vs. deblurring accuracy. To improve this trade-off effect, we propose CADS (Coded Aperture Dual-Pixel Sensing), in which we use a coded aperture in the imaging lens along with a DP sensor. In our approach, we jointly learn an optimal coded pattern and the reconstruction algorithm in an end-to-end optimization setting. Our resulting CADS imaging system demonstrates improvement of >1.5dB PSNR in all-in-focus (AIF) estimates and 5-6% in depth estimation quality over naive DP sensing for a wide range of aperture settings. Furthermore, we build the proposed CADS prototypes for DSLR photography settings and in an endoscope and a dermoscope form factor. Our novel coded dual-pixel sensing approach demonstrates accurate RGB-D reconstruction results in simulations and real-world experiments in a passive, snapshot, and compact manner.

With increasingly more powerful compute capabilities and resources in today's devices, traditionally compute-intensive automatic speech recognition (ASR) has been moving from the cloud to devices to better protect user privacy. However, it is still challenging to implement on-device ASR on resource-constrained devices, such as smartphones, smart wearables, and other small home automation devices. In this paper, we propose a series of model architecture adaptions, neural network graph transformations, and numerical optimizations to fit an advanced Conformer based end-to-end streaming ASR system on resource-constrained devices without accuracy degradation. We achieve over 5.26 times faster than realtime (0.19 RTF) speech recognition on small wearables while minimizing energy consumption and achieving state-of-the-art accuracy. The proposed methods are widely applicable to other transformer-based server-free AI applications. In addition, we provide a complete theory on optimal pre-normalizers that numerically stabilize layer normalization in any Lp-norm using any floating point precision.

北京阿比特科技有限公司