Diffusion models, which employ stochastic differential equations to sample images through integrals, have emerged as a dominant class of generative models. However, the rationality of the diffusion process itself receives limited attention, leaving the question of whether the problem is well-posed and well-conditioned. In this paper, we uncover a vexing propensity of diffusion models: they frequently exhibit the infinite Lipschitz near the zero point of timesteps. This poses a threat to the stability and accuracy of the diffusion process, which relies on integral operations. We provide a comprehensive evaluation of the issue from both theoretical and empirical perspectives. To address this challenge, we propose a novel approach, dubbed E-TSDM, which eliminates the Lipschitz singularity of the diffusion model near zero. Remarkably, our technique yields a substantial improvement in performance, e.g., on the high-resolution FFHQ dataset ($256\times256$). Moreover, as a byproduct of our method, we manage to achieve a dramatic reduction in the Frechet Inception Distance of other acceleration methods relying on network Lipschitz, including DDIM and DPM-Solver, by over 33$\%$. We conduct extensive experiments on diverse datasets to validate our theory and method. Our work not only advances the understanding of the general diffusion process, but also provides insights for the design of diffusion models.
Within the statistical literature, there is a lack of methods that allow for asymmetric multivariate spatial effects to model relations underlying complex spatial phenomena. Intercropping is one such phenomenon. In this ancient agricultural practice multiple crop species or varieties are cultivated together in close proximity and are subject to mutual competition. To properly analyse such a system, it is necessary to account for both within- and between-plot effects, where between-plot effects are asymmetric. Building on the multivariate spatial autoregressive model and the Gaussian graphical model, the proposed method takes asymmetric spatial relations into account, thereby removing some of the limiting factors of spatial analyses and giving researchers a better indication of the existence and extend of spatial relationships. Using a Bayesian-estimation framework, the model shows promising results in the simulation study. The model is applied on intercropping data consisting of Belgian endive and beetroot, illustrating the usage of the proposed methodology. An R package containing the proposed methodology can be found on // CRAN.R-project.org/package=SAGM.
An enriched approximation space is the span of a conventional basis with a few extra functions included, for example to capture known features of the solution to a computational problem. Adding functions to a basis makes it overcomplete and, consequently, the corresponding discretized approximation problem may require solving an ill-conditioned system. Recent research indicates that these systems can still provide highly accurate numerical approximations under reasonable conditions. In this paper we propose an efficient algorithm to compute such approximations. It is based on the AZ algorithm for overcomplete sets and frames, which simplifies in the case of an enriched basis. In addition, analysis of the original AZ algorithm and of the proposed variant gives constructive insights on how to achieve optimal and stable discretizations using enriched bases. We apply the algorithm to examples of enriched approximation spaces in literature, including a few non-standard approximation problems and an enriched spectral method for a 2D boundary value problem, and show that the simplified AZ algorithm is indeed stable, accurate and efficient.
Skin lesion analysis models are biased by artifacts placed during image acquisition, which influence model predictions despite carrying no clinical information. Solutions that address this problem by regularizing models to prevent learning those spurious features achieve only partial success, and existing test-time debiasing techniques are inappropriate for skin lesion analysis due to either making unrealistic assumptions on the distribution of test data or requiring laborious annotation from medical practitioners. We propose TTS (Test-Time Selection), a human-in-the-loop method that leverages positive (e.g., lesion area) and negative (e.g., artifacts) keypoints in test samples. TTS effectively steers models away from exploiting spurious artifact-related correlations without retraining, and with less annotation requirements. Our solution is robust to a varying availability of annotations, and different levels of bias. We showcase on the ISIC2019 dataset (for which we release a subset of annotated images) how our model could be deployed in the real-world for mitigating bias.
Fairness in deep learning models trained with high-dimensional inputs and subjective labels remains a complex and understudied area. Facial emotion recognition, a domain where datasets are often racially imbalanced, can lead to models that yield disparate outcomes across racial groups. This study focuses on analyzing racial bias by sub-sampling training sets with varied racial distributions and assessing test performance across these simulations. Our findings indicate that smaller datasets with posed faces improve on both fairness and performance metrics as the simulations approach racial balance. Notably, the F1-score increases by $27.2\%$ points, and demographic parity increases by $15.7\%$ points on average across the simulations. However, in larger datasets with greater facial variation, fairness metrics generally remain constant, suggesting that racial balance by itself is insufficient to achieve parity in test performance across different racial groups.
Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.