Curated datasets for healthcare are often limited due to the need of human annotations from experts. In this paper, we present MedEval, a multi-level, multi-task, and multi-domain medical benchmark to facilitate the development of language models for healthcare. MedEval is comprehensive and consists of data from several healthcare systems and spans 35 human body regions from 8 examination modalities. With 22,779 collected sentences and 21,228 reports, we provide expert annotations at multiple levels, offering a granular potential usage of the data and supporting a wide range of tasks. Moreover, we systematically evaluated 10 generic and domain-specific language models under zero-shot and finetuning settings, from domain-adapted baselines in healthcare to general-purposed state-of-the-art large language models (e.g., ChatGPT). Our evaluations reveal varying effectiveness of the two categories of language models across different tasks, from which we notice the importance of instruction tuning for few-shot usage of large language models. Our investigation paves the way toward benchmarking language models for healthcare and provides valuable insights into the strengths and limitations of adopting large language models in medical domains, informing their practical applications and future advancements.
This paper provides a novel parsimonious yet efficient design for zero-shot learning (ZSL), dubbed ParsNets, where we are interested in learning a composition of on-device friendly linear networks, each with orthogonality and low-rankness properties, to achieve equivalent or even better performance against existing deep models. Concretely, we first refactor the core module of ZSL, i.e., visual-semantics mapping function, into several base linear networks that correspond to diverse components of the semantic space, where the complex nonlinearity can be collapsed into simple local linearities. Then, to facilitate the generalization of local linearities, we construct a maximal margin geometry on the learned features by enforcing low-rank constraints on intra-class samples and high-rank constraints on inter-class samples, resulting in orthogonal subspaces for different classes and each subspace lies on a compact manifold. To enhance the model's adaptability and counterbalance over/under-fittings in ZSL, a set of sample-wise indicators is employed to select a sparse subset from these base linear networks to form a composite semantic predictor for each sample. Notably, maximal margin geometry can guarantee the diversity of features, and meanwhile, local linearities guarantee efficiency. Thus, our ParsNets can generalize better to unseen classes and can be deployed flexibly on resource-constrained devices. Theoretical explanations and extensive experiments are conducted to verify the effectiveness of the proposed method.
In this paper, we focus on multimedia recommender systems using graph convolutional networks (GCNs) where the multimodal features as well as user-item interactions are employed together. Our study aims to exploit multimodal features more effectively in order to accurately capture users' preferences for items. To this end, we point out following two limitations of existing GCN-based multimedia recommender systems: (L1) although multimodal features of interacted items by a user can reveal her preferences on items, existing methods utilize GCN designed to focus only on capturing collaborative signals, resulting in insufficient reflection of the multimodal features in the final user/item embeddings; (L2) although a user decides whether to prefer the target item by considering its multimodal features, existing methods represent her as only a single embedding regardless of the target item's multimodal features and then utilize her embedding to predict her preference for the target item. To address the above issues, we propose a novel multimedia recommender system, named MONET, composed of following two core ideas: modality-embracing GCN (MeGCN) and target-aware attention. Through extensive experiments using four real-world datasets, we demonstrate i) the significant superiority of MONET over seven state-of-the-art competitors (up to 30.32% higher accuracy in terms of recall@20, compared to the best competitor) and ii) the effectiveness of the two core ideas in MONET. All MONET codes are available at //github.com/Kimyungi/MONET.
Modeling and prediction of epidemic spread are critical to assist in policy-making for mitigation. Therefore, we present a new method based on Gaussian Process Regression to model and predict epidemics, and it quantifies prediction confidence through variance and high probability error bounds. Gaussian Process Regression excels in using small datasets and providing uncertainty bounds, and both of these properties are critical in modeling and predicting epidemic spreading processes with limited data. However, the derivation of formal uncertainty bounds remains lacking when using Gaussian Process Regression in the setting of epidemics, which limits its usefulness in guiding mitigation efforts. Therefore, in this work, we develop a novel bound on the variance of the prediction that quantifies the impact of the epidemic data on the predictions we make. Further, we develop a high probability error bound on the prediction, and we quantify how the epidemic spread, the infection data, and the length of the prediction horizon all affect this error bound. We also show that the error stays below a certain threshold based on the length of the prediction horizon. To illustrate this framework, we leverage Gaussian Process Regression to model and predict COVID-19 using real-world infection data from the United Kingdom.
This paper presents Adamastor, a new low latency and scalable decentralized anonymous payment system, which is an extension of Ring Confidential Transactions (RingCT) that is compatible with consensus algorithms that use Delegated Proof of Stake (DPoS) as a defense mechanism against Sybil attacks. Adamastor also includes a new Decoy Selection Algorithm (DSA) that can be of independent interest, called SimpleDSA, a crucial aspect of protocols that use ring signatures to anonymize the sender. SimpleDSA offers security against homogeneity attacks and chain analysis. Moreover, it enables the pruning of spent outputs, addressing the issue of perpetual output growth commonly associated with such schemes. Adamastor is implemented and evaluated using the Narwhal consensus algorithm, demonstrating significantly lower latency compared to Proof of Work based cryptocurrencies. Adamastor also exhibits ample scalability, making it suitable for a decentralized and anonymous payment network.
In this paper, we investigate a novel reconfigurable distributed antennas and reflecting surface (RDARS) aided multi-user massive MIMO system with imperfect CSI and propose a practical two-timescale (TTS) transceiver design to reduce the communication overhead and computational complexity of the system. In the RDARS-aided system, not only distribution gain but also reflection gain can be obtained by a flexible combination of the distributed antennas and reflecting surface, which differentiates the system from the others and also makes the TTS design challenging. To enable the optimal TTS transceiver design, the achievable rate of the system is first derived in closed-form. Then the TTS design aiming at the weighted sum rate maximization is considered. To solve the challenging non-convex optimization problem with high-order design variables, i.e., the transmit powers and the phase shifts at the RDARS, a block coordinate descent based method is proposed to find the optimal solutions in semi-closed forms iteratively. Specifically, two efficient algorithms are proposed with provable convergence for the optimal phase shift design, i.e., Riemannian Gradient Ascent based algorithm by exploiting the unit-modulus constraints, and Two-Tier Majorization-Minimization based algorithm with closed-form optimal solutions in each iteration. Simulation results validate the effectiveness of the proposed algorithm and demonstrate the superiority of deploying RDARS in massive MIMO systems to provide substantial rate improvement with a significantly reduced total number of active antennas/RF chains and lower transmit power when compared to the DAS and RIS-aided systems.
In this paper we describe the Portuguese-language podcast dataset we have released for academic research purposes. We give an overview of how the data was sampled, descriptive statistics over the collection, as well as information about the distribution over Brazilian and Portuguese dialects. We give results from experiments on multi-lingual summarization, showing that summarizing podcast transcripts can be performed well by a system supporting both English and Portuguese. We also show experiments on Portuguese podcast genre classification using text metadata. Combining this collection with previously released English-language collection opens up the potential for multi-modal, multi-lingual and multi-dialect podcast information access research.
In this paper, we introduce a large-scale and high-quality audio-visual speaker verification dataset, named VoxBlink. We propose an innovative and robust automatic audio-visual data mining pipeline to curate this dataset, which contains 1.45M utterances from 38K speakers. Due to the inherent nature of automated data collection, introducing noisy data is inevitable. Therefore, we also utilize a multi-modal purification step to generate a cleaner version of the VoxBlink, named VoxBlink-clean, comprising 18K identities and 1.02M utterances. In contrast to the VoxCeleb, the VoxBlink sources from short videos of ordinary users, and the covered scenarios can better align with real-life situations. To our best knowledge, the VoxBlink dataset is one of the largest publicly available speaker verification datasets. Leveraging the VoxCeleb and VoxBlink-clean datasets together, we employ diverse speaker verification models with multiple architectural backbones to conduct comprehensive evaluations on the VoxCeleb test sets. Experimental results indicate a substantial enhancement in performance,ranging from 12% to 30% relatively, across various backbone architectures upon incorporating the VoxBlink-clean into the training process. The details of the dataset can be found on //voxblink.github.io
In this survey, we examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology, unifying these various processes under one possible taxonomy. Our proposed taxonomy is constructed based on how a learning algorithm answers a central question underpinning the mechanisms of synaptic plasticity in complex adaptive neuronal systems: where do the signals that drive the learning in individual elements of a network come from and how are they produced? In this unified treatment, we organize the ever-growing set of brain-inspired learning processes into six general families and consider these in the context of backpropagation of errors and its known criticisms. The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes, wherein lies the opportunity to build a strong bridge between machine learning, computational neuroscience, and cognitive science.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.