亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent papers [Ber'2022], [GP'2020], [DHZ'2019] have addressed different variants of the (\Delta + 1)-edge colouring problem by concatenating or gluing together many Vizing chains to form what Bernshteyn [Ber'2022] coined \emph{multi-step Vizing chains}. In this paper, we propose a slightly more general definition of this term. We then apply multi-step Vizing chain constructions to prove combinatorial properties of edge colourings that lead to (improved) algorithms for computing edge colouring across different models of computation. This approach seems especially powerful for constructing augmenting subgraphs which respect some notion of locality. First, we construct strictly local multi-step Vizing chains and use them to show a local version of Vizings Theorem thus confirming a recent conjecture of Bonamy, Delcourt, Lang and Postle [BDLP'2020]. Our proof is constructive and also implies an algorithm for computing such a colouring. Then, we show that for any uncoloured edge there exists an augmenting subgraph of size O(\Delta^{7}\log n), answering an open problem of Bernshteyn [Ber'2022]. Chang, He, Li, Pettie and Uitto [CHLPU'2018] show a lower bound of \Omega(\Delta \log \frac{n}{\Delta}) for the size of such augmenting subgraphs, so the upper bound is tight up to \Delta and constant factors. These ideas also extend to give a faster deterministic LOCAL algorithm for (\Delta + 1)-edge colouring running in \tilde{O}(\poly(\Delta)\log^6 n) rounds. These results improve the recent breakthrough result of Bernshteyn [Ber'2022], who showed the existence of augmenting subgraphs of size O(\Delta^6\log^2 n), and used these to give the first (\Delta + 1)-edge colouring algorithm in the LOCAL model running in O(\poly(\Delta, \log n)) rounds. ... (see paper for the remaining part of the abstract)

相關內容

We study the dynamic fulfillment problem in e-commerce, in which incoming (multi-item) customer orders must be immediately dispatched to (a combination of) fulfillment centers that have the required inventory. A prevailing approach to this problem, pioneered by Jasin and Sinha (2015), is to write a ``deterministic'' linear program that dictates, for each item in an incoming multi-item order from a particular region, how frequently it should be dispatched to each fulfillment center (FC). However, dispatching items in a way that satisfies these frequency constraints, without splitting the order across too many FC's, is challenging. Jasin and Sinha identify this as a correlated rounding problem, and propose an intricate rounding scheme that they prove is suboptimal by a factor of at most $\approx q/4$ on a $q$-item order. This paper provides to our knowledge the first substantially improved scheme for this correlated rounding problem, which is suboptimal by a factor of at most $1+\ln(q)$. We provide another scheme for sparse networks, which is suboptimal by a factor of at most $d$ if each item is stored in at most $d$ FC's. We show both of these guarantees to be tight in terms of the dependence on $q$ or $d$. Our schemes are simple and fast, based on an intuitive idea -- items wait for FC's to ``open'' at random times, but observe them on ``dilated'' time scales. This also implies a new randomized rounding method for the classical Set Cover problem, which could be of general interest. We numerically test our new rounding schemes under the same realistic setups as Jasin and Sinha (2015) and find that they improve runtimes, shorten code, and robustly improve performance. Our code is made publicly available.

Evaluating the importance of a network node is a crucial task in network science and graph data mining. H-index is a popular centrality measure for this task, however, there is still a lack of its interpretation from a rigorous statistical aspect. Here we show the statistical nature of h-index from the perspective of order statistics, and we obtain a new family of centrality indices by generalizing the h-index along this direction. The theoretical and empirical evidences show that such a statistical interpretation enables us to obtain a general and versatile framework for quantifying the importance of a network node. Under this framework, many new centrality indices can be derived and some of which can be more accurate and robust than h-index. We believe that this research opens up new avenues for developing more effective indices for node importance quantification from a viewpoint that still remains unexplored.

We study the problem of crowdsourced PAC learning of threshold functions. This is a challenging problem and only recently have query-efficient algorithms been established under the assumption that a noticeable fraction of the workers are perfect. In this work, we investigate a more challenging case where the majority may behave adversarially and the rest behave as the Massart noise - a significant generalization of the perfectness assumption. We show that under the {semi-verified model} of Charikar et al. (2017), where we have (limited) access to a trusted oracle who always returns correct annotations, it is possible to PAC learn the underlying hypothesis class with a manageable amount of label queries. Moreover, we show that the labeling cost can be drastically mitigated via the more easily obtained comparison queries. Orthogonal to recent developments in semi-verified or list-decodable learning that crucially rely on data distributional assumptions, our PAC guarantee holds by exploring the wisdom of the crowd.

Owing to the promising ability of saving hardware cost and spectrum resources, integrated sensing and communication (ISAC) is regarded as a revolutionary technology for future sixth-generation (6G) networks. The mono-static ISAC systems considered in most of existing works can only obtain limited sensing performance due to the single observation angle and easily blocked transmission links, which motivates researchers to investigate cooperative ISAC networks. In order to further improve the degrees of freedom (DoFs) of cooperative ISAC networks, the transmitter-receiver selection, i.e., BS mode selection problem, is meaningful to be studied. However, to our best knowledge, this crucial problem has not been extensively studied in existing works. In this paper, we consider the joint BS mode selection, transmit beamforming, and receive filter design for cooperative cell-free ISAC networks, where multi-base stations (BSs) cooperatively serve communication users and detect targets. We aim to maximize the sum of sensing signal-to-interference-plus-noise ratio (SINR) under the communication SINR requirements, total power budget, and constraints on the numbers of transmitters and receivers. An efficient joint beamforming design algorithm and three different heuristic BS mode selection methods are proposed to solve this non-convex NP-hard problem. Simulation results demonstrates the advantages of cooperative ISAC networks, the importance of BS mode selection, and the effectiveness of our proposed joint design algorithms.

The recent popularity of large language models (LLMs) has brought a significant impact to boundless fields, particularly through their open-ended ecosystem such as the APIs, open-sourced models, and plugins. However, with their widespread deployment, there is a general lack of research that thoroughly discusses and analyzes the potential risks concealed. In that case, we intend to conduct a preliminary but pioneering study covering the robustness, consistency, and credibility of LLMs systems. With most of the related literature in the era of LLM uncharted, we propose an automated workflow that copes with an upscaled number of queries/responses. Overall, we conduct over a million queries to the mainstream LLMs including ChatGPT, LLaMA, and OPT. Core to our workflow consists of a data primitive, followed by an automated interpreter that evaluates these LLMs under different adversarial metrical systems. As a result, we draw several, and perhaps unfortunate, conclusions that are quite uncommon from this trendy community. Briefly, they are: (i)-the minor but inevitable error occurrence in the user-generated query input may, by chance, cause the LLM to respond unexpectedly; (ii)-LLMs possess poor consistency when processing semantically similar query input. In addition, as a side finding, we find that ChatGPT is still capable to yield the correct answer even when the input is polluted at an extreme level. While this phenomenon demonstrates the powerful memorization of the LLMs, it raises serious concerns about using such data for LLM-involved evaluation in academic development. To deal with it, we propose a novel index associated with a dataset that roughly decides the feasibility of using such data for LLM-involved evaluation. Extensive empirical studies are tagged to support the aforementioned claims.

Recent research has suggested that there are clear differences in the language used in the Dark Web compared to that of the Surface Web. As studies on the Dark Web commonly require textual analysis of the domain, language models specific to the Dark Web may provide valuable insights to researchers. In this work, we introduce DarkBERT, a language model pretrained on Dark Web data. We describe the steps taken to filter and compile the text data used to train DarkBERT to combat the extreme lexical and structural diversity of the Dark Web that may be detrimental to building a proper representation of the domain. We evaluate DarkBERT and its vanilla counterpart along with other widely used language models to validate the benefits that a Dark Web domain specific model offers in various use cases. Our evaluations show that DarkBERT outperforms current language models and may serve as a valuable resource for future research on the Dark Web.

We aim to understand the extent to which the noise distribution in a planted signal-plus-noise problem impacts its computational complexity. To that end, we consider the planted clique and planted dense subgraph problems, but in a different ambient graph. Instead of Erd\H{o}s-R\'enyi $G(n,p)$, which has independent edges, we take the ambient graph to be the \emph{random graph with triangles} (RGT) obtained by adding triangles to $G(n,p)$. We show that the RGT can be efficiently mapped to the corresponding $G(n,p)$, and moreover, that the planted clique (or dense subgraph) is approximately preserved under this mapping. This constitutes the first average-case reduction transforming dependent noise to independent noise. Together with the easier direction of mapping the ambient graph from Erd\H{o}s-R\'enyi to RGT, our results yield a strong equivalence between models. In order to prove our results, we develop a new general framework for reasoning about the validity of average-case reductions based on \emph{low sensitivity to perturbations}.

Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.

Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

北京阿比特科技有限公司