亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a statistical inference approach to estimate the frequency noise characteristics of ultra-narrow linewidth lasers from delayed self-heterodyne beat note measurements using Bayesian inference. Particular emphasis is on estimation of the intrinsic (Lorentzian) laser linewidth. The approach is based on a statistical model of the measurement process, taking into account the effects of the interferometer as well as the detector noise. Our method therefore yields accurate results even when the intrinsic linewidth plateau is obscured by detector noise. The regression is performed on periodogram data in the frequency domain using a Markov-chain Monte Carlo method. By using explicit knowledge about the statistical distribution of the observed data, the method yields good results already from a single time series and does not rely on averaging over many realizations, since the information in the available data is evaluated very thoroughly. The approach is demonstrated for simulated time series data from a stochastic laser rate equation model with 1/f-type non-Markovian noise.

相關內容

The advent of novel 5G services and applications with binding latency requirements and guaranteed Quality of Service (QoS) hastened the need to incorporate autonomous and proactive decision-making in network management procedures. The objective of our study is to provide a thorough analysis of predictive latency within 5G networks by utilizing real-world network data that is accessible to mobile network operators (MNOs). In particular, (i) we present an analytical formulation of the user-plane latency as a Hypoexponential distribution, which is validated by means of a comparative analysis with empirical measurements, and (ii) we conduct experimental results of probabilistic regression, anomaly detection, and predictive forecasting leveraging on emerging domains in Machine Learning (ML), such as Bayesian Learning (BL) and Machine Learning on Graphs (GML). We test our predictive framework using data gathered from scenarios of vehicular mobility, dense-urban traffic, and social gathering events. Our results provide valuable insights into the efficacy of predictive algorithms in practical applications.

Supervised learning typically focuses on learning transferable representations from training examples annotated by humans. While rich annotations (like soft labels) carry more information than sparse annotations (like hard labels), they are also more expensive to collect. For example, while hard labels only provide information about the closest class an object belongs to (e.g., "this is a dog"), soft labels provide information about the object's relationship with multiple classes (e.g., "this is most likely a dog, but it could also be a wolf or a coyote"). We use information theory to compare how a number of commonly-used supervision signals contribute to representation-learning performance, as well as how their capacity is affected by factors such as the number of labels, classes, dimensions, and noise. Our framework provides theoretical justification for using hard labels in the big-data regime, but richer supervision signals for few-shot learning and out-of-distribution generalization. We validate these results empirically in a series of experiments with over 1 million crowdsourced image annotations and conduct a cost-benefit analysis to establish a tradeoff curve that enables users to optimize the cost of supervising representation learning on their own datasets.

We propose center-outward superquantile and expected shortfall functions, with applications to multivariate risk measurements, extending the standard notion of value at risk and conditional value at risk from the real line to $\RR^d$. Our new concepts are built upon the recent definition of Monge-Kantorovich quantiles based on the theory of optimal transport, and they provide a natural way to characterize multivariate tail probabilities and central areas of point clouds. They preserve the univariate interpretation of a typical observation that lies beyond or ahead a quantile, but in a meaningful multivariate way. We show that they characterize random vectors and their convergence in distribution, which underlines their importance. Our new concepts are illustrated on both simulated and real datasets.

Throughout the life sciences we routinely seek to interpret measurements and observations using parameterised mechanistic mathematical models. A fundamental and often overlooked choice in this approach involves relating the solution of a mathematical model with noisy and incomplete measurement data. This is often achieved by assuming that the data are noisy measurements of the solution of a deterministic mathematical model, and that measurement errors are additive and normally distributed. While this assumption of additive Gaussian noise is extremely common and simple to implement and interpret, it is often unjustified and can lead to poor parameter estimates and non-physical predictions. One way to overcome this challenge is to implement a different measurement error model. In this review, we demonstrate how to implement a range of measurement error models in a likelihood-based framework for estimation, identifiability analysis, and prediction. We focus our implementation within a frequentist profile likelihood-based framework, but our approach is directly relevant to other approaches including sampling-based Bayesian methods. Case studies, motivated by simple caricature models routinely used in the systems biology and mathematical biology literature, illustrate how the same ideas apply to different types of mathematical models. Open-source Julia code to reproduce results is available on GitHub.

We explore the use of uncertainty estimation in the maritime domain, showing the efficacy on toy datasets (CIFAR10) and proving it on an in-house dataset, SHIPS. We present a method joining the intra-class uncertainty achieved using Monte Carlo Dropout, with recent discoveries in the field of outlier detection, to gain more holistic uncertainty measures. We explore the relationship between the introduced uncertainty measures and examine how well they work on CIFAR10 and in a real-life setting. Our work improves the FPR95 by 8% compared to the current highest-performing work when the models are trained without out-of-distribution data. We increase the performance by 77% compared to a vanilla implementation of the Wide ResNet. We release the SHIPS dataset and show the effectiveness of our method by improving the FPR95 by 44.2% with respect to the baseline. Our approach is model agnostic, easy to implement, and often does not require model retraining.

Nowadays, numerical models are widely used in most of engineering fields to simulate the behaviour of complex systems, such as for example power plants or wind turbine in the energy sector. Those models are nevertheless affected by uncertainty of different nature (numerical, epistemic) which can affect the reliability of their predictions. We develop here a new method for quantifying conditional parameter uncertainty within a chain of two numerical models in the context of multiphysics simulation. More precisely, we aim to calibrate the parameters $\theta$ of the second model of the chain conditionally on the value of parameters $\lambda$ of the first model, while assuming the probability distribution of $\lambda$ is known. This conditional calibration is carried out from the available experimental data of the second model. In doing so, we aim to quantify as well as possible the impact of the uncertainty of $\lambda$ on the uncertainty of $\theta$. To perform this conditional calibration, we set out a nonparametric Bayesian formalism to estimate the functional dependence between $\theta$ and $\lambda$, denoted $\theta(\lambda)$. First, each component of $\theta(\lambda)$ is assumed to be the realization of a Gaussian process prior. Then, if the second model is written as a linear function of $\theta(\lambda)$, the Bayesian machinery allows us to compute analytically the posterior predictive distribution of $\theta(\lambda)$ for any set of realizations $\lambda$. The effectiveness of the proposed method is illustrated on several analytical examples.

This paper studies distributional model risk in marginal problems, where each marginal measure is assumed to lie in a Wasserstein ball centered at a fixed reference measure with a given radius. Theoretically, we establish several fundamental results including strong duality, finiteness of the proposed Wasserstein distributional model risk, and the existence of an optimizer at each radius. In addition, we show continuity of the Wasserstein distributional model risk as a function of the radius. Using strong duality, we extend the well-known Makarov bounds for the distribution function of the sum of two random variables with given marginals to Wasserstein distributionally robust Markarov bounds. Practically, we illustrate our results on four distinct applications when the sample information comes from multiple data sources and only some marginal reference measures are identified. They are: partial identification of treatment effects; externally valid treatment choice via robust welfare functions; Wasserstein distributionally robust estimation under data combination; and evaluation of the worst aggregate risk measures.

This paper proposes a novel signed $\beta$-model for directed signed network, which is frequently encountered in application domains but largely neglected in literature. The proposed signed $\beta$-model decomposes a directed signed network as the difference of two unsigned networks and embeds each node with two latent factors for in-status and out-status. The presence of negative edges leads to a non-concave log-likelihood, and a one-step estimation algorithm is developed to facilitate parameter estimation, which is efficient both theoretically and computationally. We also develop an inferential procedure for pairwise and multiple node comparisons under the signed $\beta$-model, which fills the void of lacking uncertainty quantification for node ranking. Theoretical results are established for the coverage probability of confidence interval, as well as the false discovery rate (FDR) control for multiple node comparison. The finite sample performance of the signed $\beta$-model is also examined through extensive numerical experiments on both synthetic and real-life networks.

A series of experiments in stationary and moving passenger rail cars were conducted to measure removal rates of particles in the size ranges of SARS-CoV-2 viral aerosols, and the air changes per hour provided by existing and modified air handling systems. Such methods for exposure assessments are customarily based on mechanistic models derived from physical laws of particle movement that are deterministic and do not account for measurement errors inherent in data collection. The resulting analysis compromises on reliably learning about mechanistic factors such as ventilation rates, aerosol generation rates and filtration efficiencies from field measurements. This manuscript develops a Bayesian state space modeling framework that synthesizes information from the mechanistic system as well as the field data. We derive a stochastic model from finite difference approximations of differential equations explaining particle concentrations. Our inferential framework trains the mechanistic system using the field measurements from the chamber experiments and delivers reliable estimates of the underlying physical process with fully model-based uncertainty quantification. Our application falls within the realm of Bayesian ``melding'' of mechanistic and statistical models and is of significant relevance to environmental hygienists and public health researchers working on assessing performance of aerosol removal rates for rail car fleets.

This paper focuses on optimal beamforming to maximize the mean signal-to-noise ratio (SNR) for a reconfigurable intelligent surface (RIS)-aided MISO downlink system under correlated Rician fading. The beamforming problem becomes non-convex because of the unit modulus constraint of passive RIS elements. To tackle this, we propose a semidefinite relaxation-based iterative algorithm for obtaining statistically optimal transmit beamforming vector and RIS-phase shift matrix. Further, we analyze the outage probability (OP) and ergodic capacity (EC) to measure the performance of the proposed beamforming scheme. Just like the existing works, the OP and EC evaluations rely on the numerical computation of the iterative algorithm, which does not clearly reveal the functional dependence of system performance on key parameters. Therefore, we derive closed-form expressions for the optimal beamforming vector and phase shift matrix along with their OP performance for special cases of the general setup. Our analysis reveals that the i.i.d. fading is more beneficial than the correlated case in the presence of LoS components. This fact is analytically established for the setting in which the LoS is blocked. Furthermore, we demonstrate that the maximum mean SNR improves linearly/quadratically with the number of RIS elements in the absence/presence of LoS component under i.i.d. fading.

北京阿比特科技有限公司