Grant-free access is a key enabler for connecting wireless devices with low latency and low signaling overhead in massive machine-type communications (mMTC). For massive grant-free access, user-specific signatures are uniquely assigned to mMTC devices. In this paper, we first derive a sufficient condition for the successful identification of active devices through maximum likelihood (ML) estimation in massive grant-free access. The condition is represented by the coherence of a signature sequence matrix containing the signatures of all devices. Then, we present a design framework of non-orthogonal signature sequences in a deterministic fashion. The design principle relies on unimodular masking sequences with low correlation, which are applied as masking sequences to the columns of the discrete Fourier transform (DFT) matrix. For example constructions, we use four polyphase masking sequences represented by characters over finite fields. Leveraging algebraic techniques, we show that the signature sequence matrix of proposed non-orthogonal sequences has theoretically bounded low coherence. Simulation results demonstrate that the deterministic non-orthogonal signatures achieve the excellent performance of joint activity and data detection by ML- and approximate message passing (AMP)-based algorithms for massive grant-free access in mMTC.
Utilizing unmanned aerial vehicles (UAVs) with edge server to assist terrestrial mobile edge computing (MEC) has attracted tremendous attention. Nevertheless, state-of-the-art schemes based on deterministic optimizations or single-objective reinforcement learning (RL) cannot reduce the backlog of task bits and simultaneously improve energy efficiency in highly dynamic network environments, where the design problem amounts to a sequential decision-making problem. In order to address the aforementioned problems, as well as the curses of dimensionality introduced by the growing number of terrestrial terrestrial users, this paper proposes a distributed multi-objective (MO) dynamic trajectory planning and offloading scheduling scheme, integrated with MORL and the kernel method. The design of n-step return is also applied to average fluctuations in the backlog. Numerical results reveal that the n-step return can benefit the proposed kernel-based approach, achieving significant improvement in the long-term average backlog performance, compared to the conventional 1-step return design. Due to such design and the kernel-based neural network, to which decision-making features can be continuously added, the kernel-based approach can outperform the approach based on fully-connected deep neural network, yielding improvement in energy consumption and the backlog performance, as well as a significant reduction in decision-making and online learning time.
Hybrid beamforming is vital in modern wireless systems, especially for massive MIMO and millimeter-wave deployments, offering efficient directional transmission with reduced hardware complexity. However, effective beamforming in multi-user scenarios relies heavily on accurate channel state information, the acquisition of which often incurs excessive pilot overhead, degrading system performance. To address this and inspired by the spatial congruence between sub-6GHz (sub-6G) and mmWave channels, we propose a Sub-6G information Aided Multi-User Hybrid Beamforming (SA-MUHBF) framework, avoiding excessive use of pilots. SA-MUHBF employs a convolutional neural network to predict mmWave beamspace from sub-6G channel estimate, followed by a novel multi-layer graph neural network for analog beam selection and a linear minimum mean-square error algorithm for digital beamforming. Numerical results demonstrate that SA-MUHBF efficiently predicts the mmWave beamspace representation and achieves superior spectrum efficiency over state-of-the-art benchmarks. Moreover, SA-MUHBF demonstrates robust performance across varied sub-6G system configurations and exhibits strong generalization to unseen scenarios.
Surrogate-assisted evolutionary algorithms have been widely developed to solve complex and computationally expensive multi-objective optimization problems in recent years. However, when dealing with high-dimensional optimization problems, the performance of these surrogate-assisted multi-objective evolutionary algorithms deteriorate drastically. In this work, a novel Classifier-assisted rank-based learning and Local Model based multi-objective Evolutionary Algorithm (CLMEA) is proposed for high-dimensional expensive multi-objective optimization problems. The proposed algorithm consists of three parts: classifier-assisted rank-based learning, hypervolume-based non-dominated search, and local search in the relatively sparse objective space. Specifically, a probabilistic neural network is built as classifier to divide the offspring into a number of ranks. The offspring in different ranks uses rank-based learning strategy to generate more promising and informative candidates for real function evaluations. Then, radial basis function networks are built as surrogates to approximate the objective functions. After searching non-dominated solutions assisted by the surrogate model, the candidates with higher hypervolume improvement are selected for real evaluations. Subsequently, in order to maintain the diversity of solutions, the most uncertain sample point from the non-dominated solutions measured by the crowding distance is selected as the guided parent to further infill in the uncertain region of the front. The experimental results of benchmark problems and a real-world application on geothermal reservoir heat extraction optimization demonstrate that the proposed algorithm shows superior performance compared with the state-of-the-art surrogate-assisted multi-objective evolutionary algorithms. The source code for this work is available at //github.com/JellyChen7/CLMEA.
Next-generation wireless networks need to handle massive user access effectively. This paper addresses the problem of joint group scheduling and multicast beamforming for downlink multicast with many active groups. Aiming to maximize the minimum user throughput, we propose a three-phase approach to tackle this difficult joint optimization problem efficiently. In Phase 1, we utilize the optimal multicast beamforming structure obtained recently to find the group-channel directions for all groups. We propose two low-complexity scheduling algorithms in Phase 2, which determine the subset of groups in each time slot sequentially and the total number of time slots required for all groups. The first algorithm measures the level of spatial separation among groups and selects the dissimilar groups that maximize the minimum user rate into the same time slot. In contrast, the second algorithm first identifies the spatially correlated groups via a learning-based clustering method based on the group-channel directions, and then separates spatially similar groups into different time slots. Finally, the multicast beamformers for the scheduled groups are obtained in each time slot by a computationally efficient method. Simulation results show that our proposed approaches can effectively capture the level of spatial separation among groups for scheduling to improve the minimum user throughput over the conventional approach that serves all groups in a single time slot or one group per time slot, and can be executed with low computational complexity.
Localization in outdoor wireless systems typically requires transmitting specific reference signals to estimate distance (trilateration methods) or angle (triangulation methods). These cause overhead on communication, need a LoS link to work well, and require multiple base stations, often imposing synchronization or specific hardware requirements. Fingerprinting has none of these drawbacks, but building its database requires high human effort to collect real-world measurements. For a long time, this issue limited the size of databases and thus their performance. This work proposes significantly reducing human effort in building fingerprinting databases by populating them with \textit{digital twin RF maps}. These RF maps are built from ray-tracing simulations on a digital replica of the environment across several frequency bands and beamforming configurations. Online user fingerprints are then matched against this spatial database. The approach was evaluated with practical simulations using realistic propagation models and user measurements. Our experiments show sub-meter localization errors on a NLoS location 95\% of the time using sensible user measurement report sizes. Results highlight the promising potential of the proposed digital twin approach for ubiquitous wide-area 6G localization.
The growing interconnection between software systems increases the need for security already at design time. Security-related properties like confidentiality are often analyzed based on data flow diagrams (DFDs). However, manually analyzing DFDs of large software systems is bothersome and error-prone, and adjusting an already deployed software is costly. Additionally, closed analysis ecosystems limit the reuse of modeled information and impede comprehensive statements about a system's security. In this paper, we present an open and extensible framework for data flow analysis. The central element of our framework is our new implementation of a well-validated data-flow-based analysis approach. The framework is compatible with DFDs and can also extract data flows from the Palladio architectural description language. We showcase the extensibility with multiple model and analysis extensions. Our evaluation indicates that we can analyze similar scenarios while achieving higher scalability compared to previous implementations.
Integrated data and energy transfer (IDET) has been of fundamental importance for providing both wireless data transfer (WDT) and wireless energy transfer (WET) services towards low-power devices. Fluid antenna (FA) is capable of exploiting the huge spatial diversity of the wireless channel to enhance the receive signal strength, which is more suitable for the tiny-size low-power devices having the IDET requirements. In this letter, a multiuser FA assisted IDET system is studied and the weighted energy harvesting power at energy receivers (ERs) is maximized by jointly optimizing the port selection and transmit beamforming design under imperfect channel state information (CSI), while the signal-to-interference-plus-noise ratio (SINR) constraint for each data receiver (DR) is satisfied. An efficient algorithm is proposed to obtain the suboptimal solutions for the non-convex problem. Simulation results evaluate the performance of the FA-IDET system, while also demonstrate that FA outperforms the multi-input-multi-output (MIMO) counterpart in terms of the IDET performance, as long as the port number is large enough.
Planning a public transit network is a challenging optimization problem, but essential in order to realize the benefits of autonomous buses. We propose a novel algorithm for planning networks of routes for autonomous buses. We first train a graph neural net model as a policy for constructing route networks, and then use the policy as one of several mutation operators in a evolutionary algorithm. We evaluate this algorithm on a standard set of benchmarks for transit network design, and find that it outperforms the learned policy alone by up to 20% and a plain evolutionary algorithm approach by up to 53% on realistic benchmark instances.
We address the problem of user association in a dense millimeter wave (mmWave) network, in which each arriving user brings a file containing a random number of packets and each time slot is divided into multiple mini-slots. This problem is an instance of the restless multi-armed bandit problem, and is provably hard to solve. Using a technique introduced by Whittle, we relax the hard per-stage constraint that each arriving user must be associated with exactly one mmWave base station (mBS) to a long-term constraint and then use the Lagrangian multiplier technique to convert the problem into an unconstrained problem. This decouples the process governing the system into separate Markov Decision Processes at different mBSs. We prove that the problem is Whittle indexable, present a scheme for computing the Whittle indices of different mBSs, and propose an association scheme under which, each arriving user is associated with the mBS with the smallest value of the Whittle index. Using extensive simulations, we show that the proposed Whittle index based scheme outperforms several user association schemes proposed in prior work in terms of various performance metrics such as average cost, delay, throughput, and Jain's fairness index.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.