We investigate the problem of co-designing computation and communication in a multi-agent system (e.g. a sensor network or a multi-robot team). We consider the realistic setting where each agent acquires sensor data and is capable of local processing before sending updates to a base station, which is in charge of making decisions or monitoring phenomena of interest in real time. Longer processing at an agent leads to more informative updates but also larger delays, giving rise to a delay-accuracy-tradeoff in choosing the right amount of local processing at each agent. We assume that the available communication resources are limited due to interference, bandwidth, and power constraints. Thus, a scheduling policy needs to be designed to suitably share the communication channel among the agents. To that end, we develop a general formulation to jointly optimize the local processing at the agents and the scheduling of transmissions. Our novel formulation leverages the notion of Age of Information to quantify the freshness of data and capture the delays caused by computation and communication. We develop efficient resource allocation algorithms using the Whittle index approach and demonstrate our proposed algorithms in two practical applications: multi-agent occupancy grid mapping in time-varying environments, and ride sharing in autonomous vehicle networks. Our experiments show that the proposed co-design approach leads to a substantial performance improvement (18-82% in our tests).
This paper studies the UAV-enabled integrated sensing and communication (ISAC), in which UAVs are dispatched as aerial dual-functional access points (APs) for efficient ISAC. In particular, we consider a scenario with one UAV-AP equipped with a vertically placed uniform linear array (ULA), which sends combined information and sensing signals to communicate with multiple users and sense potential targets at interested areas on the ground simultaneously. Our objective is to jointly design the UAV maneuver with the transmit beamforming for optimizing the communication performance while ensuring the sensing requirements. First, we consider the quasi-stationary UAV scenario, in which the UAV is deployed at an optimizable location over the whole ISAC mission period. In this case, we jointly optimize the UAV deployment location, as well as the transmit information and sensing beamforming to maximize the weighted sum-rate throughput, subject to the sensing beampattern gain requirements and transmit power constraint. Although the above problem is non-convex, we find a high-quality solution by using the techniques of SCA and SDR, together with a 2D location search. Next, we consider the fully mobile UAV scenario, in which the UAV can fly over different locations during the ISAC mission period. In this case, we optimize the UAV flight trajectory, jointly with the transmit beamforming over time, to maximize the average weighted sum-rate throughput, subject to the sensing beampattern gain requirements and transmit power constraints as well as practical flight constraints. While the joint UAV trajectory and beamforming problem is more challenging to solve, we propose an efficient algorithm by adopting the alternating optimization together with SCA. Finally, numerical results are provided to validate the superiority of our proposed designs as compared to various benchmark schemes.
Prehensile object rearrangement in cluttered and confined spaces has broad applications but is also challenging. For instance, rearranging products in a grocery or home shelf means that the robot cannot directly access all objects and has limited free space. This is harder than tabletop rearrangement where objects are easily accessible with top-down grasps, which simplifies robot-object interactions. This work focuses on problems where such interactions are critical for completing tasks and extends state-of-the-art results in rearrangement planning. It proposes a new efficient and complete solver under general constraints for monotone instances, which can be solved by moving each object at most once. The monotone solver reasons about robot-object constraints and uses them to effectively prune the search space. The new monotone solver is integrated with a global planner to solve non-monotone instances with high-quality solutions fast. Furthermore, this work contributes an effective pre-processing tool to speed up arm motion planning for rearrangement in confined spaces. The pre-processing tool provide significant speed-ups (49.1% faster on average) in online query resolution. Comparisons in simulations further demonstrate that the proposed monotone solver, equipped with the pre-processing tool, results in 57.3% faster computation and 3 times higher success rate than alternatives. Similarly, the resulting global planner is computationally more efficient and has a higher success rate given the more powerful monotone solver and the pre-processing tool, while producing high-quality solutions for non-monotone instances (i.e., only 1.3 buffers are needed on average). Videos of demonstrating solutions on a real robotic system and codes can be found at //github.com/Rui1223/uniform_object_rearrangement.
Quadrupedal landing is a complex process involving large impacts, elaborate contact transitions, and is a crucial recovery behavior observed in many biological animals. This work presents a real-time, optimal landing controller that is free of pre-specified contact schedules. The controller determines optimal touchdown postures and reaction force profiles and is able to recover from a variety of falling configurations. The quadrupedal platform used, the MIT Mini Cheetah, recovered safely from drops of up to 8 m in simulation, as well as from a range of orientations and planar velocities. The controller is also tested on hardware, successfully recovering from drops of up to 2 m.
Assessing the impact of an intervention using time-series observational data on multiple units and outcomes is a frequent problem in many fields of scientific research. In this paper, we present a novel method to estimate intervention effects in such a setting by generalising existing approaches based on the factor analysis model and developing a Bayesian algorithm for inference. Our method is one of the few that can simultaneously: deal with outcomes of mixed type (continuous, binomial, count); increase efficiency in the estimates of the causal effects by jointly modelling multiple outcomes affected by the intervention; easily provide uncertainty quantification for all causal estimands of interest. We use the proposed approach to evaluate the impact that local tracing partnerships (LTP) had on the effectiveness of England's Test and Trace (TT) programme for COVID-19. Our analyses suggest that, overall, LTPs had a small positive impact on TT. However, there is considerable heterogeneity in the estimates of the causal effects over units and time.
AI-based defensive solutions are necessary to defend networks and information assets against intelligent automated attacks. Gathering enough realistic data for training machine learning-based defenses is a significant practical challenge. An intelligent red teaming agent capable of performing realistic attacks can alleviate this problem. However, there is little scientific evidence demonstrating the feasibility of fully automated attacks using machine learning. In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents. We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation. Our results show that the autonomous agent can escalate privileges in a Windows 7 environment using a wide variety of different techniques depending on the environment configuration it encounters. Hence, our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
In this paper, we study the problem of multiple stochastic agents interacting in a dynamic game scenario with continuous state and action spaces. We define a new notion of stochastic Nash equilibrium for boundedly rational agents, which we call the Entropic Cost Equilibrium (ECE). We show that ECE is a natural extension to multiple agents of Maximum Entropy optimality for single agents. We solve both the "forward" and "inverse" problems for the multi-agent ECE game. For the forward problem, we provide a Riccati algorithm to compute closed-form ECE feedback policies for the agents, which are exact in the Linear-Quadratic-Gaussian case. We give an iterative variant to find locally ECE feedback policies for the nonlinear case. For the inverse problem, we present an algorithm to infer the cost functions of the multiple interacting agents given noisy, boundedly rational input and state trajectory examples from agents acting in an ECE. The effectiveness of our algorithms is demonstrated in a simulated multi-agent collision avoidance scenario, and with data from the INTERACTION traffic dataset. In both cases, we show that, by taking into account the agents' game theoretic interactions using our algorithm, a more accurate model of agents' costs can be learned, compared with standard inverse optimal control methods.
We propose an innovative machine learning-based technique to address the problem of channel acquisition at the base station in frequency division duplex systems. In this context, the base station reconstructs the full channel state information in the downlink frequency range based on limited downlink channel state information feedback from the mobile terminal. The channel state information recovery is based on a convolutional neural network which is trained exclusively on collected channel state samples acquired in the uplink frequency domain. No acquisition of training samples in the downlink frequency range is required at all. Finally, after a detailed presentation and analysis of the proposed technique and its performance, the "transfer learning'' assumption of the convolutional neural network that is central to the proposed approach is validated with an analysis based on the maximum mean discrepancy metric.
Jointly achieving safety and efficiency in human-robot interaction (HRI) settings is a challenging problem, as the robot's planning objectives may be at odds with the human's own intent and expectations. Recent approaches ensure safe robot operation in uncertain environments through a supervisory control scheme, sometimes called "shielding", which overrides the robot's nominal plan with a safety fallback strategy when a safety-critical event is imminent. These reactive "last-resort" strategies (typically in the form of aggressive emergency maneuvers) focus on preserving safety without efficiency considerations; when the nominal planner is unaware of possible safety overrides, shielding can be activated more frequently than necessary, leading to degraded performance. In this work, we propose a new shielding-based planning approach that allows the robot to plan efficiently by explicitly accounting for possible future shielding events. Leveraging recent work on Bayesian human motion prediction, the resulting robot policy proactively balances nominal performance with the risk of high-cost emergency maneuvers triggered by low-probability human behaviors. We formalize Shielding-Aware Robust Planning (SHARP) as a stochastic optimal control problem and propose a computationally efficient framework for finding tractable approximate solutions at runtime. Our method outperforms the shielding-agnostic motion planning baseline (equipped with the same human intent inference scheme) on simulated driving examples with human trajectories taken from the recently released Waymo Open Motion Dataset.
When legged robots impact their environment, they undergo large changes in their velocities in a small amount of time. Measuring and applying feedback to these velocities is challenging, and is further complicated due to uncertainty in the impact model and impact timing. This work proposes a general framework for adapting feedback control during impact by projecting the control objectives to a subspace that is invariant to the impact event. The resultant controller is robust to uncertainties in the impact event while maintaining maximum control authority over the impact invariant subspace. We demonstrate the utility of the projection on a walking controller for a planar five-link-biped and on a jumping controller for a compliant 3D bipedal robot, Cassie. The effectiveness of our method is shown to translate well on hardware.
The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.