Dehumanization is a mental process that enables the exclusion and ill treatment of a group of people. In this paper, we present two data sets of dehumanizing text, a large, automatically collected corpus and a smaller, manually annotated data set. Both data sets include a combination of political discourse and dialogue from movie subtitles. Our methods give us a broad and varied amount of dehumanization data to work with, enabling further exploratory analysis and automatic classification of dehumanization patterns. Both data sets will be publicly released.
This paper makes the case that a powerful new discipline, which we term perception engineering, is steadily emerging. It follows from a progression of ideas that involve creating illusions, from historical paintings and film, to video games and virtual reality in modern times. Rather than creating physical artifacts such as bridges, airplanes, or computers, perception engineers create illusory perceptual experiences. The scope is defined over any agent that interacts with the physical world, including both biological organisms (humans, animals) and engineered systems (robots, autonomous systems). The key idea is that an agent, called a producer, alters the environment with the intent to alter the perceptual experience of another agent, called a receiver. Most importantly, the paper introduces a precise mathematical formulation of this process, based on the von Neumann-Morgenstern notion of information, to help scope and define the discipline. It is then applied to the cases of engineered and biological agents with discussion of its implications on existing fields such as virtual reality, robotics, and even social media. Finally, open challenges and opportunities for involvement are identified.
In this work, we examine the linguistic signature of online racial microaggressions (acts) and how it differs from that of personal narratives recalling experiences of such aggressions (recalls) by Black social media users. We manually curate and annotate a corpus of acts and recalls from in-the-wild social media discussions, and verify labels with Black workshop participants. We leverage Natural Language Processing (NLP) and qualitative analysis on this data to classify (RQ1), interpret (RQ2), and characterize (RQ3) the language underlying acts and recalls of racial microaggressions in the context of racism in the U.S. Our findings show that neural language models (LMs) can classify acts and recalls with high accuracy (RQ1) with contextual words revealing themes that associate Blacks with objects that reify negative stereotypes (RQ2). Furthermore, overlapping linguistic signatures between acts and recalls serve functionally different purposes (RQ3), providing broader implications to the current challenges in content moderation systems on social media.
Over the last 30 years, the World Wide Web has changed significantly. In this paper, we argue that common practices to prepare web pages for delivery conflict with many efforts to present content with minimal latency, one fundamental goal that pushed changes in the WWW. To bolster our arguments, we revisit reasons that led to changes of HTTP and compare them systematically with techniques to prepare web pages. We found that the structure of many web pages leverages features of HTTP/1.1 but hinders the use of recent HTTP features to present content quickly. To improve the situation in the future, we propose fine-grained content segmentation. This would allow to exploit streaming capabilities of recent HTTP versions and to render content as quickly as possible without changing underlying protocols or web browsers.
Precise perception of contact interactions is essential for fine-grained manipulation skills for robots. In this paper, we present the design of feedback skills for robots that must learn to stack complex-shaped objects on top of each other (see Fig.1). To design such a system, a robot should be able to reason about the stability of placement from very gentle contact interactions. Our results demonstrate that it is possible to infer the stability of object placement based on tactile readings during contact formation between the object and its environment. In particular, we estimate the contact patch between a grasped object and its environment using force and tactile observations to estimate the stability of the object during a contact formation. The contact patch could be used to estimate the stability of the object upon release of the grasp. The proposed method is demonstrated in various pairs of objects that are used in a very popular board game.
In this paper, we present a framework based on differential privacy (DP) for querying electric power measurements to detect system anomalies or bad data. Our DP approach conceals consumption and system matrix data, while simultaneously enabling an untrusted third party to test hypotheses of anomalies, such as the presence of bad data, by releasing a randomized sufficient statistic for hypothesis-testing. We consider a measurement model corrupted by Gaussian noise and a sparse noise vector representing the attack, and we observe that the optimal test statistic is a chi-square random variable. To detect possible attacks, we propose a novel DP chi-square noise mechanism that ensures the test does not reveal private information about power injections or the system matrix. The proposed framework provides a robust solution for detecting bad data while preserving the privacy of sensitive power system data.
In this paper, we introduce a novel convex formulation that seamlessly integrates the Material Point Method (MPM) with articulated rigid body dynamics in frictional contact scenarios. We extend the linear corotational hyperelastic model into the realm of elastoplasticity and include an efficient return mapping algorithm. This approach is particularly effective for MPM simulations involving significant deformation and topology changes, while preserving the convexity of the optimization problem. Our method ensures global convergence, enabling the use of large simulation time steps without compromising robustness. We have validated our approach through rigorous testing and performance evaluations, highlighting its superior capabilities in managing complex simulations relevant to robotics. Compared to previous MPM based robotic simulators, our method significantly improves the stability of contact resolution -- a critical factor in robot manipulation tasks. We make our method available in the open-source robotics toolkit, Drake.
In this letter, we present an extension to TensorNet, a state-of-the-art equivariant Cartesian tensor neural network potential, allowing it to handle charged molecules and spin states without architectural changes or increased costs. By incorporating these attributes, we address input degeneracy issues, enhancing the model's predictive accuracy across diverse chemical systems. This advancement significantly broadens TensorNet's applicability, maintaining its efficiency and accuracy.
Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving ('Real NVP') transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with many existing rendering techniques by treating them as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.
Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.
BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum