亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the relationship between the Quantum Approximate Optimization Algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum symmetry properties of the QAOA dynamics and the group of classical symmetries of the objective function. The connection is general and includes but is not limited to problems defined on graphs. We show a series of results exploring the connection and highlight examples of hard problem classes where a nontrivial symmetry subgroup can be obtained efficiently. In particular we show how classical objective function symmetries lead to invariant measurement outcome probabilities across states connected by such symmetries, independent of the choice of algorithm parameters or number of layers. To illustrate the power of the developed connection, we apply machine learning techniques towards predicting QAOA performance based on symmetry considerations. We provide numerical evidence that a small set of graph symmetry properties suffices to predict the minimum QAOA depth required to achieve a target approximation ratio on the MaxCut problem, in a practically important setting where QAOA parameter schedules are constrained to be linear and hence easier to optimize.

相關內容

我們給定x,函數都會輸出一個f(X),這個輸出的f(X)與真實值Y可能是相同的,也可能是不同的,為了表示擬合的好壞,就用一個函數來度量擬合的程度。這個函數就稱為損失函數(loss function),或者叫代價函數(cost function)

The security of code based constructions is usually assessed by Information Set Decoding (ISD) algorithms. In the quantum setting, amplitude amplification yields an asymptotic square root gain over the classical analogue. However, it is still unclear whether a real quantum circuit could yield actual improvements or suffer an enormous overhead due to its implementation. This leads to different considerations of these quantum attacks in the security analysis of code based proposals. In this work we clarify this doubt by giving the first quantum circuit design of the fully-fledged ISD procedure, an implementation in the quantum simulation library Qibo as well as precise estimates of its complexities. We show that against common belief, Prange's ISD algorithm can be implemented rather efficiently on a quantum computer, namely with only a logarithmic overhead in circuit depth compared to a classical implementation. As another major contribution, we leverage the idea of classical co-processors to design hybrid classical-quantum trade-offs, that allow to tailor the necessary qubits to any available amount, while still providing quantum speedups. Interestingly, when constraining the width of the circuit instead of its depth we are able to overcome previous optimality results on constraint quantum search.

Climate change has become one of the biggest global problems increasingly compromising the Earth's habitability. Recent developments such as the extraordinary heat waves in California & Canada, and the devastating floods in Germany point to the role of climate change in the ever-increasing frequency of extreme weather. Numerical modelling of the weather and climate have seen tremendous improvements in the last five decades, yet stringent limitations remain to be overcome. Spatially and temporally localized forecasting is the need of the hour for effective adaptation measures towards minimizing the loss of life and property. Artificial Intelligence-based methods are demonstrating promising results in improving predictions, but are still limited by the availability of requisite hardware and software required to process the vast deluge of data at a scale of the planet Earth. Quantum computing is an emerging paradigm that has found potential applicability in several fields. In this opinion piece, we argue that new developments in Artificial Intelligence algorithms designed for quantum computers - also known as Quantum Artificial Intelligence (QAI) - may provide the key breakthroughs necessary to furthering the science of climate change. The resultant improvements in weather and climate forecasts are expected to cascade to numerous societal benefits.

With the advent of real-world quantum computing, the idea that parametrized quantum computations can be used as hypothesis families in a quantum-classical machine learning system is gaining increasing traction. Such hybrid systems have already shown the potential to tackle real-world tasks in supervised and generative learning, and recent works have established their provable advantages in special artificial tasks. Yet, in the case of reinforcement learning, which is arguably most challenging and where learning boosts would be extremely valuable, no proposal has been successful in solving even standard benchmarking tasks, nor in showing a theoretical learning advantage over classical algorithms. In this work, we achieve both. We propose a hybrid quantum-classical reinforcement learning model using very few qubits, which we show can be effectively trained to solve several standard benchmarking environments. Moreover, we demonstrate, and formally prove, the ability of parametrized quantum circuits to solve certain learning tasks that are intractable for classical models, including current state-of-art deep neural networks, under the widely-believed classical hardness of the discrete logarithm problem.

We study approximation of probability measures supported on n-dimensional manifolds embedded in R^m by injective flows -- neural networks composed of invertible flow and one-layer injective components. When m <= 3n, we show that injective flows between R^n and R^m universally approximate measures supported on images of extendable embeddings, which are a proper subset of standard embeddings. In this regime topological obstructions preclude certain knotted manifolds as admissible targets. When m >= 3n + 1, we use an argument from algebraic topology known as the *clean trick* to prove that the topological obstructions vanish and injective flows universally approximate any differentiable embedding. Along the way we show that optimality of an injective flow network can be established "in reverse," resolving a conjecture made in Brehmer et Cranmer 2020. Furthermore, the designed networks can be simple enough that they can be equipped with other properties, such as a novel projection result.

The Quantum Reverse Shannon Theorem has been a milestone in quantum information theory. It states that asymptotically reliable simulation of a quantum channel assisted by unlimited shared entanglement is possible, if and only if, the classical communication cost is greater than or equal to the channel's entanglement-assisted capacity. In this letter, we are concerned with the performance of reliable reverse Shannon simulation of quantum channels. Our main result is an in-depth characterization of the reliability function, that is, the optimal rate under which the performance of channel simulation asymptotically approaches the perfect. In particular, we have determined the exact formula of the reliability function when the classical communication cost is not too high -- below a critical value. In the derivation, we have also obtained an achievability bound for the simulation of finite many copies of the channel, which is of realistic significance.

We study the edges dissolution approximation (EDA) of Carnegie et al. We begin by repeating an observation from Carnegie et al., namely that in the dyad-independent case, the exact result is tractable. We then observe that taking the sparse limit of the exact result leads to a different approximation than that in Carnegie et al. We prove that this new approximation is better than the old approximation for sparse dyad-independent models, and we show via simulation that the new approximation tends to perform better than the old approximation for sparse models with sufficiently weak dyad-dependence. We then turn to general dyad-dependent models, proving that both the old and new approximations are asymptotically exact as the time step size goes to zero, for arbitrary dyad-dependent terms and some dyad-dependent constraints. In demonstrating this result, we identify a Markov chain, defined for any sufficiently small time step, whose cross-sectional and durational behavior is exactly that we desire of the EDA. This Markov chain can be simulated, and we do so for a dyad-dependent model, showing that it eliminates the biases present with either of the dyad-independent-derived approximations.

This paper is concerned with the asymptotic behavior in $\beta$-H\"older spaces and under $L^p$ losses of a Dirichlet kernel density estimator introduced by Aitchison & Lauder (1985) and studied theoretically by Ouimet & Tolosana-Delgado (2021). It is shown that the estimator is minimax when $p \in [1, 3)$ and $\beta \in (0, 2]$, and that it is never minimax when $p \in [4, \infty)$ or $\beta \in (2, \infty)$. These results rectify in a minor way and, more importantly, extend to all dimensions those already reported in the univariate case by Bertin & Klutchnikoff (2011).

Gaussian covariance graph model is a popular model in revealing underlying dependency structures among random variables. A Bayesian approach to the estimation of covariance structures uses priors that force zeros on some off-diagonal entries of covariance matrices and put a positive definite constraint on matrices. In this paper, we consider a spike and slab prior on off-diagonal entries, which uses a mixture of point-mass and normal distribution. The point-mass naturally introduces sparsity to covariance structures so that the resulting posterior from this prior renders covariance structure learning. Under this prior, we calculate posterior model probabilities of covariance structures using Laplace approximation. We show that the error due to Laplace approximation becomes asymptotically marginal at some rate depending on the posterior convergence rate of covariance matrix under the Frobenius norm. With the approximated posterior model probabilities, we propose a new framework for estimating a covariance structure. Since the Laplace approximation is done around the mode of conditional posterior of covariance matrix, which cannot be obtained in the closed form, we propose a block coordinate descent algorithm to find the mode and show that the covariance matrix can be estimated using this algorithm once the structure is chosen. Through a simulation study based on five numerical models, we show that the proposed method outperforms graphical lasso and sample covariance matrix in terms of root mean squared error, max norm, spectral norm, specificity, and sensitivity. Also, the advantage of the proposed method is demonstrated in terms of accuracy compared to our competitors when it is applied to linear discriminant analysis (LDA) classification to breast cancer diagnostic dataset.

Distribution inference, sometimes called property inference, infers statistical properties about a training set from access to a model trained on that data. Distribution inference attacks can pose serious risks when models are trained on private data, but are difficult to distinguish from the intrinsic purpose of statistical machine learning -- namely, to produce models that capture statistical properties about a distribution. Motivated by Yeom et al.'s membership inference framework, we propose a formal definition of distribution inference attacks that is general enough to describe a broad class of attacks distinguishing between possible training distributions. We show how our definition captures previous ratio-based property inference attacks as well as new kinds of attack including revealing the average node degree or clustering coefficient of a training graph. To understand distribution inference risks, we introduce a metric that quantifies observed leakage by relating it to the leakage that would occur if samples from the training distribution were provided directly to the adversary. We report on a series of experiments across a range of different distributions using both novel black-box attacks and improved versions of the state-of-the-art white-box attacks. Our results show that inexpensive attacks are often as effective as expensive meta-classifier attacks, and that there are surprising asymmetries in the effectiveness of attacks.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司