Several manufacturers have already started to commercialize near-bank Processing-In-Memory (PIM) architectures. Near-bank PIM architectures place simple cores close to DRAM banks and can yield significant performance and energy improvements in parallel applications by alleviating data access costs. Real PIM systems can provide high levels of parallelism, large aggregate memory bandwidth and low memory access latency, thereby being a good fit to accelerate the widely-used, memory-bound Sparse Matrix Vector Multiplication (SpMV) kernel. This paper provides the first comprehensive analysis of SpMV on a real-world PIM architecture, and presents SparseP, the first SpMV library for real PIM architectures. We make three key contributions. First, we implement a wide variety of software strategies on SpMV for a multithreaded PIM core and characterize the computational limits of a single multithreaded PIM core. Second, we design various load balancing schemes across multiple PIM cores, and two types of data partitioning techniques to execute SpMV on thousands of PIM cores: (1) 1D-partitioned kernels to perform the complete SpMV computation only using PIM cores, and (2) 2D-partitioned kernels to strive a balance between computation and data transfer costs to PIM-enabled memory. Third, we compare SpMV execution on a real-world PIM system with 2528 PIM cores to state-of-the-art CPU and GPU systems to study the performance and energy efficiency of various devices. SparseP software package provides 25 SpMV kernels for real PIM systems supporting the four most widely used compressed matrix formats, and a wide range of data types. Our extensive evaluation provides new insights and recommendations for software designers and hardware architects to efficiently accelerate SpMV on real PIM systems.
The hard thresholding technique plays a vital role in the development of algorithms for sparse signal recovery. By merging this technique and heavy-ball acceleration method which is a multi-step extension of the traditional gradient descent method, we propose the so-called heavy-ball-based hard thresholding (HBHT) and heavy-ball-based hard thresholding pursuit (HBHTP) algorithms for signal recovery. It turns out that the HBHT and HBHTP can successfully recover a $k$-sparse signal if the restricted isometry constant of the measurement matrix satisfies $\delta_{3k}<0.618 $ and $\delta_{3k}<0.577,$ respectively. The guaranteed success of HBHT and HBHTP is also shown under the conditions $\delta_{2k}<0.356$ and $\delta_{2k}<0.377,$ respectively. Moreover, the finite convergence and stability of the two algorithms are also established in this paper. Simulations on random problem instances are performed to compare the performance of the proposed algorithms and several existing ones. Empirical results indicate that the HBHTP performs very comparably to a few existing algorithms and it takes less average time to achieve the signal recovery than these existing methods.
Computer vision systems today are primarily N-purpose systems, designed and trained for a predefined set of tasks. Adapting such systems to new tasks is challenging and often requires non-trivial modifications to the network architecture (e.g. adding new output heads) or training process (e.g. adding new losses). To reduce the time and expertise required to develop new applications, we would like to create general purpose vision systems that can learn and perform a range of tasks without any modification to the architecture or learning process. In this paper, we propose GPV-1, a task-agnostic vision-language architecture that can learn and perform tasks that involve receiving an image and producing text and/or bounding boxes, including classification, localization, visual question answering, captioning, and more. We also propose evaluations of generality of architecture, skill-concept transfer, and learning efficiency that may inform future work on general purpose vision. Our experiments indicate GPV-1 is effective at multiple tasks, reuses some concept knowledge across tasks, can perform the Referring Expressions task zero-shot, and further improves upon the zero-shot performance using a few training samples.
This paper introduces an objective for optimizing proper scoring rules. The objective is to maximize the increase in payoff of a forecaster who exerts a binary level of effort to refine a posterior belief from a prior belief. In this framework we characterize optimal scoring rules in simple settings, give efficient algorithms for computing optimal scoring rules in complex settings, and identify simple scoring rules that are approximately optimal. In comparison, standard scoring rules in theory and practice -- for example the quadratic rule, scoring rules for the expectation, and scoring rules for multiple tasks that are averages of single-task scoring rules -- can be very far from optimal.
Emulators that can bypass computationally expensive scientific calculations with high accuracy and speed can enable new studies of fundamental science as well as more potential applications. In this work we discuss solving a system of constraint equations efficiently using a self-learning emulator. A self-learning emulator is an active learning protocol that can be used with any emulator that faithfully reproduces the exact solution at selected training points. The key ingredient is a fast estimate of the emulator error that becomes progressively more accurate as the emulator is improved, and the accuracy of the error estimate can be corrected using machine learning. We illustrate with three examples. The first uses cubic spline interpolation to find the solution of a transcendental equation with variable coefficients. The second example compares a spline emulator and a reduced basis method emulator to find solutions of a parameterized differential equation. The third example uses eigenvector continuation to find the eigenvectors and eigenvalues of a large Hamiltonian matrix that depends on several control parameters.
The ethical design of social Virtual Reality (VR) is not a new topic, but "safety" concerns of using social VR are escalated to a different level given the heat of the Metaverse. For example, it was reported that nearly half of the female-identifying VR participants have had at least one instance of virtual sexual harassment. Feeling safe is a basic human right - in any place, regardless in real or virtual spaces. In this paper, we are seeking to understand the discrepancy between user concerns and designs in protecting user safety in social VR applications. We study safety concerns on social VR experience first by analyzing Twitter posts and then synthesize practices on safety protection adopted by four mainstream social VR platforms. We argue that future research and platforms should explore the design of social VR with boundary-awareness.
We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.
The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.
Driven by the visions of Internet of Things and 5G communications, the edge computing systems integrate computing, storage and network resources at the edge of the network to provide computing infrastructure, enabling developers to quickly develop and deploy edge applications. Nowadays the edge computing systems have received widespread attention in both industry and academia. To explore new research opportunities and assist users in selecting suitable edge computing systems for specific applications, this survey paper provides a comprehensive overview of the existing edge computing systems and introduces representative projects. A comparison of open source tools is presented according to their applicability. Finally, we highlight energy efficiency and deep learning optimization of edge computing systems. Open issues for analyzing and designing an edge computing system are also studied in this survey.