We explore a method of statistical estimation called Maximum Entropy on the Mean (MEM) which is based on an information-driven criterion that quantifies the compliance of a given point with a reference prior probability measure. At the core of this approach lies the MEM function which is a partial minimization of the Kullback-Leibler divergence over a linear constraint. In many cases, it is known that this function admits a simpler representation (known as the Cram\'er rate function). Via the connection to exponential families of probability distributions, we study general conditions under which this representation holds. We then address how the associated MEM estimator gives rise to a wide class of MEM-based regularized linear models for solving inverse problems. Finally, we propose an algorithmic framework to solve these problems efficiently based on the Bregman proximal gradient method, alongside proximal operators for commonly used reference distributions. The article is complemented by a software package for experimentation and exploration of the MEM approach in applications.
AdaBoost is one of the most popular ML algorithms. It is simple to implement and often found very effective by practitioners, while still being mathematically elegant and theoretically sound. AdaBoost's interesting behavior in practice still puzzles the ML community. We address the algorithm's stability and establish multiple convergence properties of "Optimal AdaBoost," a term coined by Rudin, Daubechies, and Schapire in 2004. We prove, in a reasonably strong computational sense, the almost universal existence of time averages, and with that, the convergence of the classifier itself, its generalization error, and its resulting margins, among many other objects, for fixed data sets under arguably reasonable conditions. Specifically, we frame Optimal AdaBoost as a dynamical system and, employing tools from ergodic theory, prove that, under a condition that Optimal AdaBoost does not have ties for best weak classifier eventually, a condition for which we provide empirical evidence from high dimensional real-world datasets, the algorithm's update behaves like a continuous map. We provide constructive proofs of several arbitrarily accurate approximations of Optimal AdaBoost; prove that they exhibit certain cycling behavior in finite time, and that the resulting dynamical system is ergodic; and establish sufficient conditions for the same to hold for the actual Optimal-AdaBoost update. We believe that our results provide reasonably strong evidence for the affirmative answer to two open conjectures, at least from a broad computational-theory perspective: AdaBoost always cycles and is an ergodic dynamical system. We present empirical evidence that cycles are hard to detect while time averages stabilize quickly. Our results ground future convergence-rate analysis and may help optimize generalization ability and alleviate a practitioner's burden of deciding how long to run the algorithm.
We study random walks on the giant component of Hyperbolic Random Graphs (HRGs), in the regime when the degree distribution obeys a power law with exponent in the range $(2,3)$. In particular, we focus on the expected times for a random walk to hit a given vertex or visit, i.e. cover, all vertices. We show that up to multiplicative constants: the cover time is $n(\log n)^2$, the maximum hitting time is $n\log n$, and the average hitting time is $n$. The first two results hold in expectation and a.a.s. and the last in expectation (with respect to the HRG). We prove these results by determining the effective resistance either between an average vertex and the well-connected "center" of HRGs or between an appropriately chosen collection of extremal vertices. We bound the effective resistance by the energy dissipated by carefully designed network flows associated to a tiling of the hyperbolic plane on which we overlay a forest-like structure.
Implementing accurate Distribution System State Estimation (DSSE) faces several challenges, among which the lack of observability and the high density of the distribution system. While data-driven alternatives based on Machine Learning models could be a choice, they suffer in DSSE because of the lack of labeled data. In fact, measurements in the distribution system are often noisy, corrupted, and unavailable. To address these issues, we propose the Deep Statistical Solver for Distribution System State Estimation (DSS$^2$), a deep learning model based on graph neural networks (GNNs) that accounts for the network structure of the distribution system and for the physical governing power flow equations. DSS$^2$ leverages hypergraphs to represent the heterogeneous components of the distribution systems and updates their latent representations via a node-centric message-passing scheme. A weakly supervised learning approach is put forth to train the DSS$^2$ in a learning-to-optimize fashion w.r.t. the Weighted Least Squares loss with noisy measurements and pseudomeasurements. By enforcing the GNN output into the power flow equations and the latter into the loss function, we force the DSS$^2$ to respect the physics of the distribution system. This strategy enables learning from noisy measurements, acting as an implicit denoiser, and alleviating the need for ideal labeled data. Extensive experiments with case studies on the IEEE 14-bus, 70-bus, and 179-bus networks showed the DSS$^2$ outperforms by a margin the conventional Weighted Least Squares algorithm in accuracy, convergence, and computational time, while being more robust to noisy, erroneous, and missing measurements. The DSS$^2$ achieves a competing, yet lower, performance compared with the supervised models that rely on the unrealistic assumption of having all the true labels.
We prove residual-type a posteriori error estimates in the maximum norm for a linear scalar elliptic convection-diffusion problem that may be singularly perturbed. Similar error analysis in the energy norm by Verf\"{u}rth indicates that a dual norm of the {convective derivative of the} error must be added to the natural energy norm in order for the natural residual estimator to be reliable and efficient. We show that the situation is similar for the maximum norm. In particular, we define a mesh-dependent weighted seminorm of the convective error which functions as a maximum-norm counterpart to the dual norm used in the energy norm setting. The total error is then defined as the sum of this seminorm, the maximum norm of the error, and data oscillation. The natural maximum norm residual error estimator is shown to be equivalent to this total error notion, with constant independent of singular perturbation parameters. These estimates are proved under the assumption that certain natural estimates hold for the Green's function for the problem at hand. Numerical experiments confirm that our estimators effectively capture the maximum-norm error behavior for singularly perturbed problems, and can effectively drive adaptive refinement in order to capture layer phenomena.
Optimal transport (OT) based data analysis is often faced with the issue that the underlying cost function is (partially) unknown. This paper is concerned with the derivation of distributional limits for the empirical OT value when the cost function and the measures are estimated from data. For statistical inference purposes, but also from the viewpoint of a stability analysis, understanding the fluctuation of such quantities is paramount. Our results find direct application in the problem of goodness-of-fit testing for group families, in machine learning applications where invariant transport costs arise, in the problem of estimating the distance between mixtures of distributions, and for the analysis of empirical sliced OT quantities. The established distributional limits assume either weak convergence of the cost process in uniform norm or that the cost is determined by an optimization problem of the OT value over a fixed parameter space. For the first setting we rely on careful lower and upper bounds for the OT value in terms of the measures and the cost in conjunction with a Skorokhod representation. The second setting is based on a functional delta method for the OT value process over the parameter space. The proof techniques might be of independent interest.
We study the distribution of the maximum likelihood estimate (MLE) in high-dimensional logistic models, extending the recent results from Sur (2019) to the case where the Gaussian covariates may have an arbitrary covariance structure. We prove that in the limit of large problems holding the ratio between the number $p$ of covariates and the sample size $n$ constant, every finite list of MLE coordinates follows a multivariate normal distribution. Concretely, the $j$th coordinate $\hat {\beta}_j$ of the MLE is asymptotically normally distributed with mean $\alpha_\star \beta_j$ and standard deviation $\sigma_\star/\tau_j$; here, $\beta_j$ is the value of the true regression coefficient, and $\tau_j$ the standard deviation of the $j$th predictor conditional on all the others. The numerical parameters $\alpha_\star > 1$ and $\sigma_\star$ only depend upon the problem dimensionality $p/n$ and the overall signal strength, and can be accurately estimated. Our results imply that the MLE's magnitude is biased upwards and that the MLE's standard deviation is greater than that predicted by classical theory. We present a series of experiments on simulated and real data showing excellent agreement with the theory.
In this paper we aim to provide analysis and insights (often based on visualization), which explain the beneficial effects of on-line decision making on top of off-line training. In particular, through a unifying abstract mathematical framework, we show that the principal AlphaZero/TD-Gammon ideas of approximation in value space and rollout apply very broadly to deterministic and stochastic optimal control problems, involving both discrete and continuous search spaces. Moreover, these ideas can be effectively integrated with other important methodologies such as model predictive control, adaptive control, decentralized control, discrete and Bayesian optimization, neural network-based value and policy approximations, and heuristic algorithms for discrete optimization.
In this paper, we study the functional linear multiplicative model based on the least product relative error criterion. Under some regularization conditions, we establish the consistency and asymptotic normality of the estimator. Further, we investigate the optimal subsampling for this model with massive data. Both the consistency and the asymptotic distribution of the subsampling estimator are first derived. Then, we obtain the optimal subsampling probabilities based on the A-optimality criterion. Moreover, the useful alternative subsampling probabilities without computing the inverse of the Hessian matrix are also proposed, which are easier to implement in practise. Finally, numerical studies and real data analysis are done to evaluate the performance of the proposed approaches.
Reinforcement learning is a framework for interactive decision-making with incentives sequentially revealed across time without a system dynamics model. Due to its scaling to continuous spaces, we focus on policy search where one iteratively improves a parameterized policy with stochastic policy gradient (PG) updates. In tabular Markov Decision Problems (MDPs), under persistent exploration and suitable parameterization, global optimality may be obtained. By contrast, in continuous space, the non-convexity poses a pathological challenge as evidenced by existing convergence results being mostly limited to stationarity or arbitrary local extrema. To close this gap, we step towards persistent exploration in continuous space through policy parameterizations defined by distributions of heavier tails defined by tail-index parameter alpha, which increases the likelihood of jumping in state space. Doing so invalidates smoothness conditions of the score function common to PG. Thus, we establish how the convergence rate to stationarity depends on the policy's tail index alpha, a Holder continuity parameter, integrability conditions, and an exploration tolerance parameter introduced here for the first time. Further, we characterize the dependence of the set of local maxima on the tail index through an exit and transition time analysis of a suitably defined Markov chain, identifying that policies associated with Levy Processes of a heavier tail converge to wider peaks. This phenomenon yields improved stability to perturbations in supervised learning, which we corroborate also manifests in improved performance of policy search, especially when myopic and farsighted incentives are misaligned.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.