Teleporting energy to remote locations is new challenge for quantum information science and technology. Developing a method for transferring local energy in laboratory systems to remote locations will enable non-trivial energy flows in quantum networks. From the perspective of quantum information engineering, we propose a method for distributing local energy to a large number of remote nodes using hyperbolic geometry. Hyperbolic networks are suitable for energy allocation in large quantum networks since the number of nodes grows exponentially. To realise long-range quantum energy teleportation, we propose a hybrid method of quantum state telepotation and quantum energy teleportation. By transmitting local quantum information through quantum teleportation and performing conditional operations on that information, quantum energy teleportation can theoretically be realized independent of geographical distance. The method we present will provide new insights into new applications of future large-scale quantum networks and potential applications of quantum physics to information engineering.
The introduction of the European Union's (EU) set of comprehensive regulations relating to technology, the General Data Protection Regulation, grants EU citizens the right to explanations for automated decisions that have significant effects on their life. This poses a substantial challenge, as many of today's state-of-the-art algorithms are generally unexplainable black boxes. Simultaneously, we have seen an emergence of the fields of quantum computation and quantum AI. Due to the fickle nature of quantum information, the problem of explainability is amplified, as measuring a quantum system destroys the information. As a result, there is a need for post-hoc explanations for quantum AI algorithms. In the classical context, the cooperative game theory concept of the Shapley value has been adapted for post-hoc explanations. However, this approach does not translate to use in quantum computing trivially and can be exponentially difficult to implement if not handled with care. We propose a novel algorithm which reduces the problem of accurately estimating the Shapley values of a quantum algorithm into a far simpler problem of estimating the true average of a binomial distribution in polynomial time.
Seminal works on light spanners over the years have provided spanners with optimal lightness in various graph classes, such as general graphs, Euclidean spanners, and minor-free graphs. Three shortcomings of previous works on light spanners are: (i) The runtimes of these constructions are almost always sub-optimal and usually far from optimal. (ii) These constructions are optimal in the standard and crude sense but not in a refined sense that takes into account a wider range of involved parameters. (iii) The techniques are ad hoc per graph class and thus can't be applied broadly. This work aims at addressing these shortcomings by presenting a unified framework of light spanners in a variety of graph classes. Informally, the framework boils down to a transformation from sparse spanners to light spanners; since the state-of-the-art for sparse spanners is much more advanced than that for light spanners, such a transformation is powerful. First, we apply our framework to design fast constructions with optimal lightness for several graph classes. Second, we apply our framework to achieve more refined optimality bounds for several graph classes, i.e., the bounds remain optimal when taking into account a wider range of involved parameters, most notably $\epsilon$. Our new constructions are significantly better than the state-of-the-art for every examined graph class.
Entanglement distillation is crucial in quantum information processing. But it remains challenging to estimate the distillable entanglement and its closely related essential quantity, the quantum capacity of a noisy quantum channel. In this work, we propose methods for evaluating both quantities by squeezing out useless entanglement within a state or a quantum channel, whose contributions are expected to be ignored for the distillable entanglement or the quantum capacity, respectively. We first consider a general resource measure called the reverse divergence of resources to quantify the minimum divergence between a target state and the set of free states. We then introduce the reverse max-relative entropy of entanglement and apply it to establish efficiently computable upper bounds on the distillable entanglement. We also extend the reverse divergence of resources to quantum channels and derive upper bounds on the quantum capacity. We further apply our method to investigate purifying the maximally entangled states under practical noises, such as depolarizing and amplitude damping noises, and notably establish improvements in estimating the one-way distillable entanglement. Our bounds also offer useful benchmarks for evaluating the quantum capacities of qubit quantum channels of interest, including the Pauli channels and the random mixed unitary channels.
Several physically inspired problems have been proven undecidable; examples are the spectral gap problem and the membership problem for quantum correlations. Most of these results rely on reductions from a handful of undecidable problems, such as the halting problem, the tiling problem, the Post correspondence problem or the matrix mortality problem. All these problems have a common property: they have an NP-hard bounded version. This work establishes a relation between undecidable unbounded problems and their bounded NP-hard versions. Specifically, we show that NP-hardness of a bounded version follows easily from the reduction of the unbounded problems. This leads to new and simpler proofs of the NP-hardness of bounded version of the Post correspondence problem, the matrix mortality problem, the positivity of matrix product operators, the reachability problem, the tiling problem, and the ground state energy problem. This work sheds light on the intractability of problems in theoretical physics and on the computational consequences of bounding a parameter.
Visualizations have played a crucial role in helping quantum computing users explore quantum states in various quantum computing applications. Among them, Bloch Sphere is the widely-used visualization for showing quantum states, which leverages angles to represent quantum amplitudes. However, it cannot support the visualization of quantum entanglement and superposition, the two essential properties of quantum computing. To address this issue, we propose VENUS, a novel visualization for quantum state representation. By explicitly correlating 2D geometric shapes based on the math foundation of quantum computing characteristics, VENUS effectively represents quantum amplitudes of both the single qubit and two qubits for quantum entanglement. Also, we use multiple coordinated semicircles to naturally encode probability distribution, making the quantum superposition intuitive to analyze. We conducted two well-designed case studies and an in-depth expert interview to evaluate the usefulness and effectiveness of VENUS. The result shows that VENUS can effectively facilitate the exploration of quantum states for the single qubit and two qubits.
Flexible duplex networks allow users to dynamically employ uplink and downlink channels without static time scheduling, thereby utilizing the network resources efficiently. This work investigates the sum-rate maximization of flexible duplex networks. In particular, we consider a network with pairwise-fixed communication links. Corresponding combinatorial optimization is a non-deterministic polynomial (NP)-hard without a closed-form solution. In this respect, the existing heuristics entail high computational complexity, raising a scalability issue in large networks. Motivated by the recent success of Graph Neural Networks (GNNs) in solving NP-hard wireless resource management problems, we propose a novel GNN architecture, named Flex-Net, to jointly optimize the communication direction and transmission power. The proposed GNN produces near-optimal performance meanwhile maintaining a low computational complexity compared to the most commonly used techniques. Furthermore, our numerical results shed light on the advantages of using GNNs in terms of sample complexity, scalability, and generalization capability.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.